ﻻ يوجد ملخص باللغة العربية
We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) data set. This is a large multimodal data set of human interactions with a robotic arm in a shared autonomy setting designed to imitate assistive eating. The data set provides human, robot, and environmental data views of twenty-four different people engaged in an assistive eating task with a 6 degree-of-freedom (DOF) robot arm. From each participant, we recorded video of both eyes, egocentric video from a head-mounted camera, joystick commands, electromyography from the forearm used to operate the joystick, third person stereo video, and the joint positions of the 6 DOF robot arm. Also included are several features that come as a direct result of these recordings, such as eye gaze projected onto the egocentric video, body pose, hand pose, and facial keypoints. These data streams were collected specifically because they have been shown to be closely related to human mental states and intention. This data set could be of interest to researchers studying intention prediction, human mental state modeling, and shared autonomy. Data streams are provided in a variety of formats such as video and human-readable CSV and YAML files.
We present situated live programming for human-robot collaboration, an approach that enables users with limited programming experience to program collaborative applications for human-robot interaction. Allowing end users, such as shop floor workers,
When cooperating with a human, a robot should not only care about its environment and task but also develop an understanding of the partners reasoning. To support its human partner in complex tasks, the robot can share information that it knows. Howe
Effective human-robot collaboration (HRC) requires extensive communication among the human and robot teammates, because their actions can potentially produce conflicts, synergies, or both. We develop a novel augmented reality (AR) interface to bridge
We design and develop a new shared Augmented Reality (AR) workspace for Human-Robot Interaction (HRI), which establishes a bi-directional communication between human agents and robots. In a prototype system, the shared AR workspace enables a shared p
We present a method for learning a human-robot collaboration policy from human-human collaboration demonstrations. An effective robot assistant must learn to handle diverse human behaviors shown in the demonstrations and be robust when the humans adj