ﻻ يوجد ملخص باللغة العربية
We present novel solutions to the problem of direct localization of multiple narrow-band and arbitrarily correlated sources by partly calibrated arrays, i.e., arrays composed of fully calibrated sub-arrays yet lacking inter-array calibration. The solutions presented vary in their performance and computational complexity. We present first a relaxed maximum likelihood solution whose concentrated likelihood involves only the unknown locations of the sources and requires an eigen-decomposition of the array covariance matrix at every potential location. To reduce the computational load, we introduce an approximation which eliminates the need for such an eigen-decomposition at every potential location. To further reduce the computational load, novel MUSIC-like and MVDR-like solutions are presented which are computationally much simpler than the existing solutions. The performance of these solutions is evaluated and compared via simulations.
Localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor gelocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization rel
Received signal strength (RSS) based source localization method is popular due to its simplicity and low cost. However, this method is highly dependent on the propagation model which is not easy to be captured in practice. Moreover, most existing wor
In this paper we present a new localization method SMS-LORETA (Simultaneous Multiple Sources- Low Resolution Brain Electromagnetic Tomography), capable to locate efficiently multiple simultaneous sources. The new method overcomes some of the drawback
Localization is important for a large number of Internet of Things (IoT) endpoint devices connected by LoRaWAN. Due to the bandwidth limitations of LoRaWAN, existing localization methods without specialized hardware (e.g., GPS) produce poor performan
Indoor localization has drawn much attention owing to its potential for supporting location based services. Among various indoor localization techniques, the received signal strength (RSS) based technique is widely researched. However, in conventiona