ﻻ يوجد ملخص باللغة العربية
Recently, we witnessed a tremendous effort to conquer the realm of acoustics as a possible playground to test with sound waves topologically protected wave propagation. Acoustics differ substantially from photonic and electronic systems since longitudinal sound waves lack intrinsic spin polarization and breaking the time-reversal symmetry requires additional complexities that both are essential in mimicking the quantum effects leading to topologically robust sound propagation. In this article, we review the latest efforts to explore with sound waves topological states of quantum matter in two- and three-dimensional systems where we discuss how spin and valley degrees of freedom appear as highly novel ingredients to tailor the flow of sound in the form of one-way edge modes and defect-immune protected acoustic waves. Both from a theoretical stand point and based on contemporary experimental verifications, we summarize the latest advancements of the flourishing research frontier on topological sound.
Topological states of matter are particularly robust, since they exploit global features insensitive to local perturbations. In this work, we describe how to create a Chern insulator of phonons in the solid state. The proposed implementation is based
We propose theoretically a reconfigurable two-dimensional (2D) hexagonal sonic crystal with higher-order topology protected by the six-fold, $C_6$, rotation symmetry. The acoustic band gap and band topology can be controlled by rotating the triangula
Discovery of novel topological orders of condensed matters is of a significant interest in both fundamental and applied physics due to the associated quantum conductance behaviors and unique symmetry-protected backscattering-immune propagation agains
Synthetic dimensions can be rendered in the physical space and this has been achieved with photonics and cold atomic gases, however, little to no work has been succeeded in acoustics because acoustic wave-guides cannot be weakly coupled in a continuo
Valley pseudospin, labeling quantum states of energy extrema in momentum space, is attracting tremendous attention1-13 because of its potential in constructing new carrier of information. Compared with the non-topological bulk valley transport realiz