ﻻ يوجد ملخص باللغة العربية
In this work, we consider a mathematical model for flow in a unsaturated porous medium containing a fracture. In all subdomains (the fracture and the adjacent matrix blocks) the flow is governed by Richards equation. The submodels are coupled by physical transmission conditions expressing the continuity of the normal fluxes and of the pressures. We start by analyzing the case of a fracture having a fixed width-length ratio, called $varepsilon > 0$. Then we take the limit $varepsilon to 0$ and give a rigorous proof for the convergence towards effective models. This is done in different regimes, depending on how the ratio of porosities and permeabilities in the fracture, respectively matrix scale with respect to $varepsilon$, and leads to a variety of effective models. Numerical simulations confirm the theoretical upscaling results.
We study several iterative methods for fully coupled flow and reactive transport in porous media. The resulting mathematical model is a coupled, nonlinear evolution system. The flow model component builds on the Richards equation, modified to incorpo
In this article, we present new random walk methods to solve flow and transport problems in unsaturated/saturated porous media, including coupled flow and transport processes in soils, heterogeneous systems modeled through random hydraulic conductivi
A PDE system consisting of the momentum balance, mass balance, and energy balance equations for displacement, capillary pressure, and temperature as a model for unsaturated fluid flow in a porous viscoelastoplastic solid is shown to admit a solution
It is well known that domain-decomposition-based multiscale mixed methods rely on interface spaces, defined on the skeleton of the decomposition, to connect the solution among the non-overlapping subdomains. Usual spaces, such as polynomial-based one
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia