ترغب بنشر مسار تعليمي؟ اضغط هنا

A collisionless singular Cucker-Smale model with decentralized formation control

58   0   0.0 ( 0 )
 نشر من قبل Dante Kalise
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the design of decentralized feedback control laws inducing consensus and prescribed spatial patterns over a singular interacting particle system of Cucker-Smale type. The control design consists of a feedback term regulating the distance between each agent and pre-assigned subset of neighbours. Such a design represents a multidimensional extension of existing control laws for 1d platoon formation control. For the proposed controller we study consensus emergence, collision-avoidance and formation control features in terms of energy estimates for the closed-loop system. Numerical experiments in 1, 2 and 3 dimensions assess the different features of the proposed design.



قيم البحث

اقرأ أيضاً

A decentralized feedback controller for multi-agent systems, inspired by vehicle platooning, is proposed. The closed-loop resulting from the decentralized control action has three distinctive features: the generation of collision-free trajectories, f locking of the system towards a consensus state in velocity, and asymptotic convergence to a prescribed pattern of distances between agents. For each feature, a rigorous dynamical analysis is provided, yielding a characterization of the set of parameters and initial configurations where collision avoidance, flocking, and pattern formation is guaranteed. Numerical tests assess the theoretical results presented.
We introduce a mean field game model for pedestrians moving in a given domain and choosing their trajectories so as to minimize a cost including a penalization on the difference between their own velocity and that of the other agents they meet. We pr ove existence of an equilibrium in a Lagrangian setting by using its variational structure, and then study its properties and regularity.
In this paper we study a Markovian two-dimensional bounded-variation stochastic control problem whose state process consists of a diffusive mean-reverting component and of a purely controlled one. The main problems characteristic lies in the interact ion of the two components of the state process: the mean-reversion level of the diffusive component is an affine function of the current value of the purely controlled one. By relying on a combination of techniques from viscosity theory and free-boundary analysis, we provide the structure of the value function and we show that it satisfies a second-order smooth-fit principle. Such a regularity is then exploited in order to determine a system of functional equations solved by the two monotone continuous curves (free boundaries) that split the control problems state space in three connected regions. Further properties of the free boundaries are also obtained.
In this paper, we present the hydrodynamic limit of a multiscale system describing the dynamics of two populations of agents with alignment interactions and the effect of an internal variable. It consists of a kinetic equation coupled with an Euler-t ype equation inspired by the thermomechanical Cucker--Smale (TCS) model. We propose a novel drag force for the fluid-particle interaction reminiscent of Stokes law. Whilst the macroscopic species is regarded as a self-organized background fluid that affects the kinetic species, the latter is assumed sparse and does not affect the macroscopic dynamics. We propose two hyperbolic scalings, in terms of a strong and weak relaxation regime of the internal variable towards the background population. Under each regime, we prove the rigorous hydrodynamic limit towards a coupled system composed of two Euler-type equations. Inertial effects of momentum and internal variable in the kinetic species disappear for strong relaxation, whereas a nontrivial dynamics for the internal variable appears for weak relaxation. Our analysis covers both the case of Lipschitz and weakly singular influence functions
Distributed optimization is often widely attempted and innovated as an attractive and preferred methodology to solve large-scale problems effectively in a localized and coordinated manner. Thus, it is noteworthy that the methodology of distributed mo del predictive control (DMPC) has become a promising approach to achieve effective outcomes, e.g., in decision-making tasks for multi-agent systems. However, the typical deployment of such distributed MPC frameworks would lead to the involvement of nonlinear processes with a large number of nonconvex constraints. To address this important problem, the development and innovation of a hierarchical three-block alternating direction method of multipliers (ADMM) approach is presented in this work to solve this nonconvex cooperative DMPC problem in multi-agent systems. Here firstly, an additional slack variable is introduced to transform the original large-scale nonconvex optimization problem. Then, a hierarchical ADMM approach, which contains outer loop iteration by the augmented Lagrangian method (ALM) and inner loop iteration by three-block semi-proximal ADMM, is utilized to solve the resulting transformed nonconvex optimization problem. Additionally, it is analytically shown and established that the requisite desired stationary point exists for convergence in the algorithm. Finally, an approximate optimization stage with a barrier method is then applied to further significantly improve the computational efficiency, yielding the final improved hierarchical ADMM. The effectiveness of the proposed method in terms of attained performance and computational efficiency is demonstrated on a cooperative DMPC problem of decision-making process for multiple unmanned aerial vehicles (UAVs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا