ﻻ يوجد ملخص باللغة العربية
Graphene / silicon (G/Si) heterostructures have been studied extensively in the past years for applications such as photodiodes, photodetectors and solar cells, with a growing focus on efficiency and performance. Here, a specific contact pattern scheme with interdigitated Schottky and graphene/insulator/silicon (GIS) structures is explored to experimentally demonstrate highly sensitive G/Si photodiodes. With the proposed design, an external quantum efficiency (EQE) of > 80 % is achieved for wavelengths ranging from 380 to 930 nm. A maximum EQE of 98% is observed at 850 nm, where the responsivity peaks to 635 mA/W, surpassing conventional Si p-n photodiodes. This efficiency is attributed to the highly effective collection of charge carriers photogenerated in Si under the GIS parts of the diodes. The experimental data is supported by numerical simulations of the diodes. Based on these results, a definition for the true active area in G/Si photodiodes is proposed, which may serve towards standardization of G/Si based optoelectronic devices.
Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/s
Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatibl
Graphene has extraordinary electro-optic properties and is therefore a promising candidate for monolithic photonic devices such as photodetectors. However, the integration of this atom-thin layer material with bulky photonic components usually result
Heterostructures of two-dimensional (2D) and three-dimensional (3D) materials form efficient devices for utilizing the properties of both classes of materials. Graphene/silicon (G/Si) Schottky diodes have been studied extensively with respect to thei
We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphen