ﻻ يوجد ملخص باللغة العربية
We propose a novel framework, called Disjoint Mapping Network (DIMNet), for cross-modal biometric matching, in particular of voices and faces. Different from the existing methods, DIMNet does not explicitly learn the joint relationship between the modalities. Instead, DIMNet learns a shared representation for different modalities by mapping them individually to their common covariates. These shared representations can then be used to find the correspondences between the modalities. We show empirically that DIMNet is able to achieve better performance than other current methods, with the additional benefits of being conceptually simpler and less data-intensive.
We introduce a seemingly impossible task: given only an audio clip of someone speaking, decide which of two face images is the speaker. In this paper we study this, and a number of related cross-modal tasks, aimed at answering the question: how much
Multiple studies in the past have shown that there is a strong correlation between human vocal characteristics and facial features. However, existing approaches generate faces simply from voice, without exploring the set of features that contribute t
Voice profiling aims at inferring various human parameters from their speech, e.g. gender, age, etc. In this paper, we address the challenge posed by a subtask of voice profiling - reconstructing someones face from their voice. The task is designed t
This work focuses on the analysis that whether 3D face models can be learned from only the speech inputs of speakers. Previous works for cross-modal face synthesis study image generation from voices. However, image synthesis includes variations such
With the prevalence of RGB-D cameras, multi-modal video data have become more available for human action recognition. One main challenge for this task lies in how to effectively leverage their complementary information. In this work, we propose a Mod