ﻻ يوجد ملخص باللغة العربية
The project Novel Astronomical Instrumentation through photonic Reformatting is a DFG-funded collaboration to exploit the recognized potential of photonics solutions for a radically new approach to astronomical instrumentation for optical/infrared high precision spectroscopy and high angular resolution imaging. We present a project overview and initial development results from our Adaptive Optics-photonic test bed, Ultrafast Laser Inscribed waveguides for interferometric beam combination and 3D printing structures for astronomical instrumentation. The project is expected to lead to important technological breakthroughs facilitating uniquely functionality and technical solutions for the next generation of instrumentation.
In this paper we have evaluated the amount of available telescope time at four interesting sites for astronomical instrumentation. We use the GOES 12 data for the years 2008 and 2009. We use a homogeneous methodology presented in several previous pap
Regular two-dimensional lattices of evanescently coupled waveguides may provide in the near future photonic components capable of combining interferometrically and simultaneously a large number of telescopes, thus easing the imaging capabilities of o
We have created a new semantic tool called AstroConcepts, providing definitions of astronomical concepts present on Web pages. This tool is a Google Chrome plug-in that interrogates the Etymological Dictionary of Astronomy and Astrophysics, developed
In this article I present IEAD, a new interface for astronomical science databases. It is based on a powerful, yet simple, syntax designed to completely abstract the user from the structure of the underlying database. The programming language chosen
In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescope