Mapping the 13CO/C18O abundance ratio in the massive star forming region G29.96-0.02


الملخص بالإنكليزية

Estimating molecular abundances ratios from the direct measurement of the emission of the molecules towards a variety of interstellar environments is indeed very useful to advance in our understanding of the chemical evolution of the Galaxy, and hence of the physical processes related to the chemistry. It is necessary to increase the sample of molecular clouds, located at different distances, in which the behavior of molecular abundance ratios, such as the 13CO/C18O ratio (X), is studied in detail. We selected the well-studied high-mass star-forming region G29.96-0.02, located at a distance of about 6.2 kpc, which is an ideal laboratory to perform this kind of studies. To study the X towards this region it was used 12CO J=3-2 data obtained from COHRS, 13CO and C18O J=3-2 data from CHIMPS, and 13CO and C18O J=2-1 data retrieved from the CDS database (observed with the IRAM 30m telescope). The distribution of column densities and X throughout the molecular cloud was studied based on LTE and non-LTE methods. Values of X between 1.5 to 10.5, with an average of 5, were found, showing that, besides the dependency between X and the galactocentric distance, the local physical conditions may strongly affect this abundance ratio. We found that correlating the X map with the location of the ionized gas and dark clouds allows us to suggest in which regions the far-UV radiation stalls in dense gaseous components, and in which ones it escapes and selectively photodissociates the C18O isotope. The non-LTE analysis shows that the molecular gas has very different physical conditions, not only spatially across the cloud, but also along the line of sight. This kind of studies may represent a tool to indirectly estimate (from molecular lines observations) the degree of photodissociation in molecular clouds, which is indeed useful to study the chemistry in the interstellar medium.

تحميل البحث