Within a gauge-invariant microscopic kinetic theory, we study the electromagnetic response in the superconducting states. Both superfluid and normal-fluid dynamics are involved. We predict that the normal fluid is present only when the excited superconducting velocity $v_s$ is larger than a threshold $v_L=|Delta|/k_F$. Interestingly, with the normal fluid, we find that there exists friction between the normal-fluid and superfluid currents. Due to this friction, part of the superfluid becomes viscous. Therefore, a three-fluid model: normal fluid, non-viscous and viscous superfluids, is proposed. For the stationary magnetic response, at $v_s<v_L$ with only the non-viscous superfluid, the Meissner supercurrent is excited and the gap equation can reduce to Ginzburg-Landau equation. At $v_s{ge}v_L$, with the normal fluid, non-viscous and viscous superfluids, in addition to the directly excited Meissner supercurrent in the superfluid, normal-fluid current is also induced through the friction drag with the viscous superfluid current. Due to the normal-fluid and viscous superfluid currents, the penetration depth is influenced by the scattering effect. In addition, a modified Ginzburg-Landau equation is proposed. We predict an exotic phase in which both the resistivity and superconducting gap are {em finite}. As for the optical response, the excited ${v_s}$ oscillates with time. When $v_s<v_L$, only the non-viscous superfluid is present whereas at $v_s{ge}v_L$, normal fluid, non-viscous and viscous superfluids are present. We show that the excited normal-fluid current exhibits the Drude-model behavior while the superfluid current consists of the Meissner supercurrent and Bogoliubov quasiparticle current. Due to the friction between the superfluid and normal-fluid currents, the optical conductivity is captured by the three-fluid model. ......