ﻻ يوجد ملخص باللغة العربية
Primordial Black Holes (PBHs) with a mass $M lesssim {10^{17}}$g are expected to inject sub-GeV electrons and positrons in the Galaxy via Hawking radiation. These cosmic rays are shielded by the solar magnetic field for Earth-bound detectors, but not for Voyager-1, which is now beyond the heliopause. We use its data to constrain the fraction of PBHs to the dark matter in the Galaxy, finding that PBHs with $M<10^{16}$g cannot contribute more than 0.1% (or less for a lognormal mass distribution). Our limits are based on local galactic measurements and are thus complementary to those derived from cosmological observations.
We study the dynamics of a spectator Higgs field which stochastically evolves during inflation onto near-critical trajectories on the edge of a runaway instability. We show that its fluctuations do not produce primordial black holes (PBHs) in suffici
The NANOGrav Collaboration has recently published a strong evidence for a stochastic common-spectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitatio
Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $
Reticulum II (Ret II) is a satellite galaxy of the Milky Way and presents a prime target to investigate the nature of dark matter (DM) because of its high mass-to-light ratio. We evaluate a dedicated INTEGRAL observation campaign data set to obtain $
The mechanism of the generation of dark matter and dark radiation from the evaporation of primordial black holes is very interesting. We consider the case of Kerr black holes to generalize previous results obtained in the Schwarzschild case. For dark