ترغب بنشر مسار تعليمي؟ اضغط هنا

The cosmic epoch dependence of environmental effects on size evolution of red-sequence early-type galaxies

84   0   0.0 ( 0 )
 نشر من قبل Stefano Andreon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Andreon




اسأل ChatGPT حول البحث

[abridged] This work aims to observationally investigate the history of size growth of early-type galaxies and how the growth depends on cosmic epoch and the mass of the halo in which they are embedded. We carried out a photometric and structural analysis in the rest-frame $V$ band of a mass-selected ($log M/M_odot >10.7$) sample of red-sequence early-type galaxies with spectroscopic/grism redshift in the general field up to $z=2$ to complement a previous work presenting an identical analysis but in halos 100 times more massive and 1000 times denser. We homogeneously derived sizes (effective radii) fully accounting for the multi-component nature of galaxies and the common presence of isophote twists and ellipticity gradients. By using these mass-selected samples, composed of 170 red-sequence early-type galaxies in the general field and 224 identically selected and analyzed in clusters, we isolate the effect on galaxy sizes of the halo in which galaxies are embedded and its dependence on epoch. We find that the $log$ of the galaxy size at a fixed stellar mass, $log M/M_odot= 11$, has increased with epoch at a rate twice as fast in the field than in cluster in the last 10 Gyr ($0.26pm0.03$ versus $0.13pm0.02$ dex per unit redshift). Red-sequence early-type galaxies in the general field reached the size of their cousins in denser environment by $z=0.25pm0.13$ in spite of being three times smaller at $zsim2$. Data point toward a model where size growth is epoch-independent (i.e., $partial log r_e /partial z = c$), but with a rate $c$ depending on environment, $partial c /partial log M_{halo} approx 0.05$. Environment determines the growth rate ($d log r_e / dz$) at all redshifts, indicating an external origin for the galaxy growth without any clear epoch where it ceases to have an effect.



قيم البحث

اقرأ أيضاً

80 - A. Lapi 2018
[ABRIDGED] We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs), that encompasses their high-$z$ star-forming progenitors, their high-$z$ quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises: biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star-formation takes place and most of the stellar mass is accumulated; ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations, to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size $R_e$, on the ratio $v/sigma$ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum $j_star$ of the stellar component; we find good consistency with the available multi-band data in average values and dispersion, both for local ETGs and for their $zsim 1-2$ star-forming and quiescent progenitors.
94 - Yongmin Yoon , Myungshin Im , 2016
Under the $Lambda$ cold dark matter ($Lambda$CDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at $0.1leq z < 0.15$, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than $10^{11.2}M_{odot}$ show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20-40% larger in densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the $Lambda$CDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.
We analyse the Fundamental Plane (FP) relation of $39,993$ early-type galaxies (ETGs) in the optical (griz) and $5,080$ ETGs in the Near-Infrared (YJHK) wavebands, forming an optical$+$NIR sample of $4,589$ galaxies. We focus on the analysis of the F P as a function of the environment where galaxies reside. We characterise the environment using the largest group catalogue, based on 3D data, generated from SDSS at low redshift ($z < 0.1$). We find that the intercept $``c$ of the FP decreases smoothly from high to low density regions, implying that galaxies at low density have on average lower mass-to-light ratios than their high-density counterparts. The $``c$ also decreases as a function of the mean characteristic mass of the parent galaxy group. However, this trend is weak and completely accounted for by the variation of $``c$ with local density. The variation of the FP offset is the same in all wavebands, implying that ETGs at low density have younger luminosity-weighted ages than cluster galaxies, consistent with the expectations of semi-analytical models of galaxy formation. We measure an age variation of $sim 0.048$~dex ($sim 11%$) per decade of local galaxy density. This implies an age difference of about $32 %$ ($sim 3 , Gyr$) between galaxies in the regions of highest density and the field. We find the metallicity decreasing, at $sim 2$~$sigma$, from low to high density. We also find $2.5 , sigma$ evidence that the variation in age per decade of local density augments, up to a factor of two, for galaxies residing in massive relative to poor groups. (abridged)
Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work don e on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed, using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way-like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15-65 kpc/h at the relative velocities of 1500-1600 km/s. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy-cluster interactions, we claim that the role of the galaxy-galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy-cluster interactions, depending on the dynamical history.
161 - C. Nipoti 2009
The characteristic size of early-type galaxies (ETGs) of given stellar mass is observed to increase significantly with cosmic time, from redshift z>2 to the present. A popular explanation for this size evolution is that ETGs grow through dissipationl ess (dry) mergers, thus becoming less compact. Combining N-body simulations with up-to-date scaling relations of local ETGs, we show that such an explanation is problematic, because dry mergers do not decrease the galaxy stellar-mass surface-density enough to explain the observed size evolution, and also introduce substantial scatter in the scaling relations. Based on our set of simulations, we estimate that major and minor dry mergers increase half-light radius and projected velocity dispersion with stellar mass (M) as M^(1.09+/-0.29) and M^(0.07+/-0.11), respectively. This implies that: 1) if the high-z ETGs are indeed as dense as estimated, they cannot evolve into present-day ETGs via dry mergers; 2) present-day ETGs cannot have assembled more than ~45% of their stellar mass via dry mergers. Alternatively, dry mergers could be reconciled with the observations if there was extreme fine tuning between merger history and galaxy properties, at variance with our assumptions. Full cosmological simulations will be needed to evaluate whether this fine-tuned solution is acceptable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا