ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduced mobility of infected agents suppresses but lengthens disease in biased random walk

94   0   0.0 ( 0 )
 نشر من قبل Genki Ichinose
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various theoretical models have been proposed to understand the basic nature of epidemics. Recent studies focus on the effects of mobility to epidemic process. However, uncorrelated random walk is typically assumed as the type of movement. In our daily life, the movement of people sometimes tends to be limited to a certain direction, which can be described by biased random walk. Here, we developed an agent-based model of susceptible-infected-recovered (SIR) epidemic process in a 2D continuous space where agents tend to move in a certain direction in addition to random movement. Moreover, we mainly focus on the effect of the reduced mobility of infected agents. Our model assumes that, when people are infected, their movement activity is greatly reduced because they are physically weakened by the disease. By conducting extensive simulations, we found that when the movement of infected people is limited, the final epidemic size becomes small. However, that crucially depended on the movement type of agents. Furthermore, the reduced mobility of infected agents lengthened the duration of the epidemic because the infection progressed slowly.



قيم البحث

اقرأ أيضاً

81 - S. Bourgeon 2007
Immunity is believed to share limited resources with other physiological functions and this may partly account for the fitness costs of reproduction. Previous studies have shown that the acquired immunity of female common eiders (Somateria mollissima ) is suppressed during the incubation fast. To save energy, triiodothyronine (T3) is adaptively decreased during fasting in most bird species, despite T3 levels are maintained throughout incubation in female eiders. However, the relationship between thyroid hormones and the immune system is not fully understood. The current study aimed to determine the endocrine mechanisms that underlie immunosuppression in incubating female eiders. ...
We study a biased random walk on the interlacement set of $mathbb{Z}^d$ for $dgeq 3$. Although the walk is always transient, we can show, in the case $d=3$, that for any value of the bias the walk has a zero limiting speed and actually moves slower than any power.
70 - Jun Zhang , Lihong Wang , Ji Wang 2020
After the sudden outbreak of Coronavirus in Wuhan, continuous and rich data of the epidemic has been made public as the vital fact for decision support in control measures and aggressive implementation of containment strategies and plans. With the fu rther growth and spreading of the virus, future resource allocation and planning under updated strategies and measures rely on careful study of the epidemic data and characteristics for accurate prediction and estimation. By using the SIR model and reported data, key parameters are obtained from least sum of squared errors for an accurate prediction of epidemic trend in the last four weeks.
In times of outbreaks, an essential requirement for better monitoring is the evaluation of the number of undiagnosed infected individuals. An accurate estimate of this fraction is crucial for the assessment of the situation and the establishment of p rotective measures. In most current studies using epidemics models, the total number of infected is either approximated by the number of diagnosed individuals or is dependent on the model parameters and assumptions, which are often debated. We here study the relationship between the fraction of diagnosed infected out of all infected, and the fraction of infected with known contaminator out of all diagnosed infected. We show that those two are approximately the same in exponential models and across most models currently used in the study of epidemics, independently of the model parameters. As an application, we compute an estimate of the effective number of infected by the SARS-CoV-2 virus in various countries.
We study the asymptotic behaviour of once-reinforced biased random walk (ORbRW) on Galton-Watson trees. Here the underlying (unreinforced) random walk has a bias towards or away from the root. We prove that in the setting of multiplicative once-reinf orcement the ORbRW can be recurrent even when the underlying biased random walk is ballistic. We also prove that, on Galton-Watson trees without leaves, the speed is positive in the transient regime. Finally, we prove that, on regular trees, the speed of the ORbRW is monotone decreasing in the reinforcement parameter when the underlying random walk has high speed, and the reinforcement parameter is small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا