ﻻ يوجد ملخص باللغة العربية
Deep Learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new dataset, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy survey (DES) using images for a sample of $sim$5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy ($sim$ 90%), but small completeness and purity values. A fast domain adaptation step, consisting in a further training with a small DES sample of galaxies ($sim$500-300), is enough for obtaining an accuracy > 95% and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular dataset, machines can quickly adapt to new instrument characteristics (e.g., PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.
We present the first nonparametric morphological analysis of a set of spiral galaxies from UV to submm wavelengths. Our study is based on high-quality multi-wavelength imaging for nine well-resolved spiral galaxies from the DustPedia database, combin
We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Legacy Survey images of galaxies within the SDSS DR8 footprint. Deeper DECaLS images (r=23.6 vs. r=22.2 from SDSS) reveal spiral arms, weak bars, and t
We report the quadruple nature of the source WISE 025942.9-163543 as observed in the VST-ATLAS survey. Spectra of the two brightest images show quasar emission lines at z=2.16. The system was discovered by splitting ATLAS cutouts of WISE sources with
In this paper we introduce the textsc{Deepz} deep learning photometric redshift (photo-$z$) code. As a test case, we apply the code to the PAU survey (PAUS) data in the COSMOS field. textsc{Deepz} reduces the $sigma_{68}$ scatter statistic by 50% at
Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its hig