ﻻ يوجد ملخص باللغة العربية
The probability distribution functions (PDFs) for atomic, molecular, and total gas surface densities of M33 are determined at a resolution of about 50~pc over regions that share coherent morphological properties to unveil fingerprints of self-gravity across the star-forming disk. Most of the total gas PDFs from the central region to the edge of the star-forming disk are well-fitted by log-normal functions whose width decreases radially outwards. Because the HI velocity dispersion is approximately constant across the disk, the decrease of the PDF width is consistent with a lower Mach number for the turbulent ISM at large galactocentric radii where a higher fraction of HI is in the warm phase. The atomic gas is found mostly at face-on column densities below N$_{H}^{lim}$=2.5 10$^{21}$~cm$^{-2}$, with small radial variations of N$_{H}^{lim}$. The molecular gas PDFs do not show strong deviations from log-normal functions in the central region where molecular fractions are high. Here the high pressure and rate of star formation shapes the PDF as a log-normal function dispersing self-gravitating complexes with intense feedback at all column densities that are spatially resolved. Power law PDFs for the molecules are found near and above N$_H^{lim}$, in the well defined southern spiral arm and in a continuous dense filament extending at larger galactocentric radii; this is evident in cloud samples at different evolutionary stages along the star formation cycle. In the filament nearly half of the molecular gas departs from a log-normal PDF and power laws are also observed in pre-star forming molecular complexes. The slope of the power law is between -1 and -2. This slope, combined with maps showing where the different parts of the power law PDFs come from, suggest a power-law stratification of density within molecular cloud complexes, which is consistent with the dominance of self-gravity.
We introduce the position-dependent probability distribution function (PDF) of the smoothed matter field as a cosmological observable. In comparison to the PDF itself, the spatial variation of the position-dependent PDF is simpler to model and has di
Both observational and theoretical research over the past decade has demonstrated that the probability distribution function (PDF) of the gas density in turbulent molecular clouds is a key ingredient for understanding star formation. It has recently
We study density fluctuations in supersonic turbulence using both theoretical methods and numerical simulations. A theoretical formulation is developed for the probability distribution function (PDF) of the density at steady state, connecting it to t
We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more
Simulations generally show that non-self-gravitating clouds have a lognormal column density ($Sigma$) probability distribution function (PDF), while self-gravitating clouds with active star formation develop a distinct power-law tail at high column d