ﻻ يوجد ملخص باللغة العربية
This paper proposes a low order geometrically exact flexible beam formulation based on the utilisation of generic beam shape functions to approximate distributed kinematic properties of the deformed structure. The proposed nonlinear beam shapes approach is in contrast to the majority of geometrically nonlinear treatments in the literature in which element based --- and hence high order --- discretisations are adopted. The kinematic quantities approximated specifically pertain to shear and extensional gradients as well as local orientation parameters based on an arbitrary set of globally referenced attitude parameters. In developing the dynamic equations of motion, an Euler angle parameterisation is selected as it is found to yield fast computational performance. The resulting dynamic formulation is closed using an example shape function set satisfying the single generic kinematic constraint. The formulation is demonstrated via its application to the modelling of a series of static and dynamic test cases of both simple and non-prismatic structures; the simulated results are verified using MSC Nastran and an element-based intrinsic beam formulation. Through these examples it is shown that the nonlinear beam shapes approach is able to accurately capture the beam behaviour with a very minimal number of system states.
Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwells equations are present upon variation of the fundamental Lagrangian; (ii) the trace of the canonical energy-momentum te
The accurate modeling of the dielectric properties of water is crucial for many applications in physics, computational chemistry and molecular biology. This becomes possible in the framework of nonlocal electrostatics, for which we propose a novel fo
This paper presents a novel total Lagrangian cell-centred finite volume formulation of geometrically exact beams with arbitrary initial curvature undergoing large displacements and finite rotations. The choice of rotation parametrisation, the mathema
In this paper, we consider an imperfect finite beam lying on a nonlinear foundation, whose dimensionless stiffness is reduced from $1$ to $k$ as the beam deflection increases. Periodic equilibrium solutions are found analytically and are in good agre
Within the framework of Hilbert space theory, we derive a maximum-power variational principle applicable to classical spontaneous radiation from prescribed harmonic current sources. Results are first derived in the paraxial limit, then appropriately