We study the back stable Schubert calculus of the infinite flag variety. Our main results are: 1) a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; 2) a novel definition of double and triple Stanley symmetric functions; 3) a proof of the positivity of double Edelman-Greene coefficients generalizing the results of Edelman-Greene and Lascoux-Schutzenberger; 4) the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman-Greene insertion algorithm; 5) the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; 6) equivariant Pieri rules for the homology of the infinite Grassmannian; 7) homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.