ترغب بنشر مسار تعليمي؟ اضغط هنا

Confronting SUSY GUT with Dark Matter, Sparticle Spectroscopy and Muon $(g-2)$

73   0   0.0 ( 0 )
 نشر من قبل Mario E. Gomez
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, $SO(10)$ and $ SU(4)_c times SU(2)_L times SU(2)_R$ (4-2-2). We identify characteristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to $SO(10)$, giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.



قيم البحث

اقرأ أيضاً

We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric $SU(4)_c times SU(2)_L times SU(2)_R$ (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at $M_{GUT}$ can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.
77 - Fei Wang , Lei Wu , Yang Xiao 2021
The new FNAL result of the muon $g-2$, combined with the BNL result, shows a 4.2$sigma$ deviation from the SM. We use the new data of the muon $g-2$ to revisit several GUT-scale constrained SUSY models with the constraints from the LHC searches, the dark matter detection, the flavor data and the electroweak vacuum stability. We first demonstrate the tension between the muon $g-2$ and other experimental measurements in the CMSSM/mSUGRA. Then after discussing the possible ways to alleviate such a tension and showing the muon $g-2$ in pMSSM under relevant experimental constraints, we survey several extensions of the CMSSM/mSUGRA with different types of universal boundary conditions at the GUT scale. Finally, we briefly discuss the muon $g-2$ in other popular SUSY breaking mechanisms, namely the GMSB and AMSB mechanisms and their extensions.
75 - Priscilla Cushman 2005
The anomalous magnetic moment of the muon has been measured to 0.5 ppm in a series of precision experiments at the Brookhaven Alternating Gradient Synchrotron. The individual results for each sign: a(mu+)= 11 659 204(7)(5) E-10 and a(mu-) = 11 659 21 4(8)(3) E-10 are consistent with each other, so that we can write the average anomaly as a(mu)(exp) = 11 659 208(6) E-10 (0.5 ppm). A discrepancy between the measured value and the Standard Model (Delta a(mu)) is a signal for new physics. Assuming that such a discrepancy is due to contributions from supersymmetric particles provides a framework which can be used to constrain the mass of the dark matter particles, assumed to be the lightest neutral supersymmetric particles. The deviation from the standard model has varied between 1.5 sigma and 3 sigma significance, dominated by uncertainties in the hadronic contribution to the standard model calculation. Currently the standard model prediction is calculated to 0.6 ppm precision and Delta a(mu) = 23.5 (9.0) E-10, representing a 2.6 sigma deviation. We expect that the error on a(mu)(SM) will be reduced by a factor of two within the next decade. To fully utilize this improvement, a new g-2 run is proposed for the near future. If the mean Delta a(mu) remains the same, this would result in close to a 6 sigma discrepancy. In this case, we would expect to see SUSY particles at the LHC and use the g-2 results to measure tan beta. If, instead, the Standard Model is confirmed to this precision, gauginos must have masses higher than ~ 500 GeV/c2 and simple SUSY dark matter models will be severely constrained.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. T he second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A $mathbb{Z}_3$ symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the $mathbb{Z}_3$ symmetry in suppressing lepton flavor violation is also elucidated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا