ﻻ يوجد ملخص باللغة العربية
Combinatorial preference aggregation has many applications in AI. Given the exponential nature of these preferences, compact representations are needed and ($m$)CP-nets are among the most studied ones. Sequential and global voting are two ways to aggregate preferences over CP-nets. In the former, preferences are aggregated feature-by-feature. Hence, when preferences have specific feature dependencies, sequential voting may exhibit voting paradoxes, i.e., it might select sub-optimal outcomes. To avoid paradoxes in sequential voting, one has often assumed the $mathcal{O}$-legality restriction, which imposes a shared topological order among all the CP-nets. On the contrary, in global voting, CP-nets are considered as a whole during preference aggregation. For this reason, global voting is immune from paradoxes, and there is no need to impose restrictions over the CP-nets topological structure. Sequential voting over $mathcal{O}$-legal CP-nets has extensively been investigated. On the other hand, global voting over non-$mathcal{O}$-legal CP-nets has not carefully been analyzed, despite it was stated in the literature that a theoretical comparison between global and sequential voting was promising and a precise complexity analysis for global voting has been asked for multiple times. In quite few works, very partial results on the complexity of global voting over CP-nets have been given. We start to fill this gap by carrying out a thorough complexity analysis of Pareto and majority global voting over not necessarily $mathcal{O}$-legal acyclic binary polynomially connected (m)CP-nets. We settle these problems in the polynomial hierarchy, and some of them in PTIME or LOGSPACE, whereas EXPTIME was the previously known upper bound for most of them. We show various tight lower bounds and matching upper bounds for problems that up to date did not have any explicit non-obvious lower bound.
The notion of optimality naturally arises in many areas of applied mathematics and computer science concerned with decision making. Here we consider this notion in the context of three formalisms used for different purposes in reasoning about multi-a
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of
Learning of user preferences, as represented by, for example, Conditional Preference Networks (CP-nets), has become a core issue in AI research. Recent studies investigate learning of CP-nets from randomly chosen examples or from membership and equiv
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define
Obtaining high-quality parallel corpora is of paramount importance for training NMT systems. However, as many language pairs lack adequate gold-standard training data, a popular approach has been to mine so-called pseudo-parallel sentences from paire