ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the thermo-particle transport properties of an unitary Fermi gas be- tween two reservoirs connected by a quantum point contact. We find several distinguished properties that are qualitatively different from those of weak or non-interacting gas systems. The particle trans- port figure of merit is drastically enhanced in the unitary regime and it increases as the transmission coefficient increases, exactly opposite to the behavior in the weak or non-interacting gas systems. The Lorentz number violates the Wiedemann-Franz law, demonstrating the breakdown of Fermi liquid. These transport properties are the hallmarks of the unitary Fermi gas and are attributed to the existence of preformed Cooper pairs.
We study energy and particle transport for one-dimensional strongly interacting bosons through a single channel connecting two atomic reservoirs. We show the emergence of particle- and energy- current separation, leading to the violation of the Wiede
We consider in depth the applicability of the Wiedemann-Franz (WF) law, namely that the electronic thermal conductivity ($kappa$) is proportional to the product of the absolute temperature ($T$) and the electrical conductivity ($sigma$) in a metal wi
We present a simple theory of thermoelectric transport in bilayer graphene and report our results for the electrical resistivity, the thermal resistivity, the Seebeck coefficient, and the Wiedemann-Franz ratio as functions of doping density and tempe
In this letter, we investigate the fluctuation effects on the transport properties of unitary Fermi gases in the vicinity of the superfluid transition temperature $T_c$. Based on the time-dependent Ginzburg-Landau formalism of the BEC-BCS crossover,
We analyze the charge and thermal transport at a junction of interacting quantum wires close to equilibrium. Within the framework of Tomonaga-Luttinger liquids, we compute the thermal conductance for a wide class of boundary conditions and detail the