ترغب بنشر مسار تعليمي؟ اضغط هنا

Passive Ballistic Microbunching of Non-Ultrarelativistic Electron Bunches using Electromagnetic Wakefields in Dielectric-Lined Waveguides

253   0   0.0 ( 0 )
 نشر من قبل Francois Lemery
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Temporally-modulated electron beams have a wide array of applications ranging from the generation of coherently-enhanced electromagnetic radiation to the resonant excitation of electromagnetic wakefields in advanced-accelerator concepts. Likewise producing low-energy ultrashort microbunches could be useful for ultra-fast electron diffraction and new accelerator-based light-source concepts. In this Letter we propose and experimentally demonstrate a passive microbunching technique capable of forming a picosecond bunch train at $sim 6$~MeV. The method relies on the excitation of electromagnetic wakefields as the beam propagates through a dielectric-lined waveguide. Owing to the non-ultrarelativistic nature of the beam, the induced energy modulation eventually converts into a density modulation as the beam travels in a following free-space drift. The modulated beam is further accelerated to $sim20$~MeV while preserving the imparted density modulation.



قيم البحث

اقرأ أيضاً

In previous work [1] general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X- ray FELs--like the LCLS--is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation--than is found in [1]--of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest. [1] K. Bane and G. Stupakov, Phys. Rev. ST Accel. Beams 18, 034401(2015).
Here we discuss the possibility of employment of ultrarelativistic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to the Cherenkov resonance plasma-bunch interaction. We estimate the maximum amplitude of suc h a wake and minimum system length at which the maximum amplitude can be generated at the given bunch parameters.
A rigorous approach for solving canonical circular open-ended dielectric-lined waveguide diffraction problems is presented. This is continuation of our recent paper [1] where a simpler case of uniform dielectric filling has been considered. Here we d eal with the case of an open-ended circular waveguide with layered dielectric filling which is closer to potential applications. The presented method uses the solution of corresponding Wiener-Hopf-Fock equation and leads to an infinite linear system for reflection coefficients (S-parameters) of the waveguide, the latter can be efficiently solved numerically using the reducing technique. As a specific example directly applicable to beam-driven radiation sources based on dielectric-lined capillaries, diffraction of a slow TM symmetrical mode at the open end of the described waveguide is considered. A series of such modes forms the wakefield (Cherenkov radiation field) generated by a charged particle bunch during its passage along the vacuum channel axis. Calculated S-parameters were compared with those obtained from COMSOL simulation and an excellent agreement was shown. This method is expected to be very convenient for analytical investigation of various electromagnetic interactions of Terahertz (THz) waves (both free and guided) and charged particle bunches with slow-wave structures prospective in context of modern beam-driven THz emitters, THz accererators and THz-based bunch manipulation and bunch diagnostic systems.
The description of physical processes with many-particle systems is a key approach to the modeling of countless physical systems. In storage rings, where ultrarelativistic particles are agglomerated in dense bunches, the measurement of their phase-sp ace distribution (PSD) is of paramount importance: at any time the PSD not only determines the complete space-time evolution but also provides fundamental performance characteristics for storage ring operation. Here, we demonstrate a non-destructive tomographic imaging technique for the 2D longitudinal PSD of ultrarelativistic electron bunches. For this purpose, we utilize a unique setup, which streams turn-by-turn near-field measurements of bunch profiles at MHz repetition rates. To demonstrate the feasibility of our method, we induce a non-equilibrium state and show, that the PSD microstructuring as well as the PSD dynamics can be observed in great detail with an unprecedented resolution. Our approach offers a pathway to control ultrashort bunches and supports, as one example, the development of compact accelerators with low energy footprints.
A linear theory of a wakefield excitation in a plasma-dielectric accelerating structure by a drive electron bunch in the case of an off-axis bunch injection has been constructed. The structure under investigation is a round dielectric-loaded metal wa veguide with a channel for the charged particles, filled with homogeneous cold plasma. Derived theory was used to investigate numerically the spatial distribution of the bunch-excited wakefield components, which act on both the drive and witness bunches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا