ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersoft X-ray sources identified with Be binaries in the Magellanic Clouds

102   0   0.0 ( 0 )
 نشر من قبل Marina Orio
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated four luminous supersoft X-ray sources (SSS) in the Magellanic Clouds suspected to have optical counterparts of Be spectral type. If the origin of the X-rays is in a very hot atmosphere heated by hydrogen burning in accreted envelopes of white dwarfs (WDs), like in the majority of SSS, these objects are close binaries, with very massive WD primaries. Using the South African Large Telescope (SALT), we obtained the first optical spectra of the proposed optical counterparts of two candidate Be stars associated with SUZAKU J0105-72 and XMMU J010147.5-715550, respectively a transient and a recurrent SSS, and confirmed the proposed Be classification and Small Magellanic Clouds membership. We also obtained new optical spectra of two other Be stars proposed as optical counterparts of the transient SSS XMMU J052016.0-692505 and MAXI-J0158-744. The optical spectra with double peaked emission line profiles, are typical of Be stars and present characteristics similar to many high mass X-ray binaries with excretion disks, truncated by the tidal interaction with a compact object. The presence of a massive WD that sporadically ignites nuclear burning, accreting only at certain orbital or evolutionary phases, explains the supersoft X-ray flares. We measured equivalent widths and distances between lines peaks, and investigated the variability of the prominent emission lines profiles. The excretion disks seem to be small in size, and are likely to be differentially rotating. We discuss possible future observations and the relevance of these objects as a new class of type Ia supernovae progenitors.



قيم البحث

اقرأ أيضاً

The X-ray binary population of the Small Magellanic Cloud (SMC) contains a large number of massive X-ray binaries and the recent survey of the SMC by XMM-Newton has resulted in almost 50 more tentative high mass X-ray binary candidates. Using probabi lity parameters from Haberl & Sturm (2016) together with the optical spectra and timing in this work, we confirm six new massive X-ray binaries in the SMC. We also report two very probable binary periods; of 36.4d in XMM 1859 and of 72.2 d in XMM 2300. These Be X-ray binaries are likely part of the general SMC population which rarely undergoes an X-ray outburst.
276 - H. Klus , W.C.G. Ho , M.J. Coe 2013
We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these da ta to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 10^6-10^10 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.
190 - E.Chiosi , M.Orio , F. Bernardini 2014
We searched optical/UV/IR counterparts of seven supersoft X-ray sources (SSS) in M31 in the Hubble Space Telescope (HST) Panchromatic Hubble Andromeda Treasury (PHAT) archival images and photometric catalog. Three of the SSS were transient, the other four are persistent sources. The PHAT offers the opportunity to identify SSS hosting very massive white dwarfs that may explode as type Ia supernovae in single degenerate binaries, with magnitudes and color indexes typical of symbiotic stars, high mass close binaries, or systems with optically luminous accretion disks. We find evidence that the transient SSS were classical or recurrent novae; two likely counterparts we identified are probably symbiotic binaries undergoing mass transfer at a very high rate. There is a candidate accreting white dwarf binary in the error circle of one of the persistent sources, r3-8. In the spatial error circle of the best studied SSS in M31, r2-12, no red giants or AGB stars are sufficiently luminous in the optical and UV bands to be symbiotic systems hosting an accreting and hydrogen burning white dwarf. This SSS has a known modulation of the X-ray flux with a 217.7 s period, and we measured an upper limit on its derivative, 0.82 x 10(-11). This limit can be reconciled with the rotation period of a white dwarf accreting at high rate in a binary with a few-hours orbital period. However, there is no luminous counterpart with color indexes typical of an accretion disk irradiated by a hot central source. Adopting a semi-empirical relationship, the upper limit for the disk optical luminosity implies an upper limit of only 169 minutes for the orbital period of the white dwarf binary.
[abridged] We present 52-93 micron spectra obtained with Spitzer in the MIPS-SED mode, of a representative sample of luminous compact far-IR sources in the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe, RCrB-type star HV2 671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e] stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue Variable R71, supernova remnant N49, a large number of young stellar objects, compact HII regions and molecular cores, and a background galaxy (z~0.175). We use the spectra to constrain the presence and temperature of cold dust and the excitation conditions and shocks within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding ISM. Evolved stars, including LBV R71, lack cold dust except in some cases where we argue that this is swept-up ISM. This leads to an estimate of the duration of the prolific dust-producing phase (superwind) of several thousand years for both RSGs and massive AGB stars, with a similar fractional mass loss experienced despite the different masses. We tentatively detect line emission from neutral oxygen in the extreme RSG WOHG064, with implications for the wind driving. In N49, the shock between the supernova ejecta and ISM is revealed by its strong [OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of ISM dust was swept up. Some of the compact HII regions display pronounced [OIII] 88-micron emission. The efficiency of photo-electric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved object; some of the YSOs are found to contain crystalline water ice.
The orbital motion of a neutron star about its optical companion presents a window through which to study the orbital parameters of that binary system. This has been used extensively in the Milky Way to calculate these parameters for several high-mas s X-ray binaries. Using several years of RXTE PCA data, we derive the orbital parameters of four Be/X-ray binary systems in the SMC, increasing the number of systems with orbital solutions by a factor of three. We find one new orbital period, confirm a second and discuss the parameters with comparison to the Galactic systems. Despite the low metallicity in the SMC, these binary systems sit amongst the Galactic distribution of orbital periods and eccentricities, suggesting that metallicity may not play an important role in the evolution of high-mass X-ray binary systems. A plot of orbital period against eccentricity shows that the supergiant, Be and low eccentricity OB transient systems occupy separate regions of the parameter space; akin to the separated regions on the Corbet diagram. Using a Spearmans rank correlation test, we also find a possible correlation between the two parameters. The mass functions, inclinations and orbital semimajor axes are derived for the SMC systems based on the binary parameters and the spectral classification of the optical counterpart. As a by-product of our work, we present a catalogue of the orbital parameters for every high-mass X-ray binary in the Galaxy and Magellanic Clouds for which they are known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا