ﻻ يوجد ملخص باللغة العربية
A new class of modified theory of gravity is introduced where the volume form becomes dynamical. This approach is motivated by unimodular gravity and can also be related to Brans-Dicke theory. On the level of the action, the only change made will be through the volume element which is used in the integration. This is achieved by the introduction of a fourth order tensor which connects the spacetime metric to the new volume form. Using dynamical systems techniques, this model is studied in the context of cosmology. The most interesting result is that there exist parameter ranges where this model starts undergoing an epoch of accelerated expansion, followed by a decelerating expansion which evolves to a final epoch of accelerated expansion.
In this paper we review the extent to which one can use classical distribution theory in describing solutions of Einsteins equations. We show that there are a number of physically interesting cases which cannot be treated using distribution theory bu
In this Letter we discuss a natural general relativistic mechanism that causes inhomogeneities and hence generates matter perturbations in the early universe. We concentrate on spikes, both incomplete spikes and recurring spikes, that naturally occur
We study how a strong gravity affects the equation of state of matters. For this purpose, we employ a canonical ensemble of classical monoatomic ideal gas inside a box in a Rindler spacetime. The total energy decreases monotonically with the increase
Deviations from relativity are tightly constrained by numerous experiments. A class of unmeasured and potentially large violations is presented that can be tested in the laboratory only via weak gravity couplings. Specialized highly sensitive experim
We review the physics of atoms and clocks in weakly curved spacetime, and how each may be used to test the Einstein Equivalence Principle (EEP) in the context of the minimal Standard Model Extension (mSME). We find that conventional clocks and matter