ﻻ يوجد ملخص باللغة العربية
We explore possible non-Gaussian features of primordial gravitational waves by constructing model-independent templates for nonlinearity parameters of tensor bispectrum. Our analysis is based on Effective Field Theory of inflation that relies on no particular model as such and thus the results are quite generic. The analysis further reveals that chances of detecting squeezed limit tensor bispectrum are fairly higher than equilateral limit. We also discuss prospects of detectability in upcoming CMB missions.
Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures
It has been shown that a cosmological background with an anisotropic stress tensor, appropriate for a free streaming thermal neutrino background, can damp primordial gravitational waves after they enter the horizon, and can thus affect the CMB B-mode
The possibility that primordial black holes (PBHs) represent all of the dark matter (DM) in the Universe and explain the coalescences of binary black holes detected by LIGO/Virgo has attracted a lot of attention. PBHs are generated by the enhancement
The recent observations from CMB have imposed a very stringent upper-limit on the tensor/scalar ratio $r$ of inflation models, $r < 0.064$, which indicates that the primordial gravitational waves (PGW), even though possible to be detected, should hav