ﻻ يوجد ملخص باللغة العربية
The characterization of quantum processes, e.g. communication channels, is an essential ingredient for establishing quantum information systems. For quantum key distribution protocols, the amount of overall noise in the channel determines the rate at which secret bits are distributed between authorized partners. In particular, tomographic protocols allow for the full reconstruction, and thus characterization, of the channel. Here, we perform quantum process tomography of high-dimensional quantum communication channels with dimensions ranging from 2 to 5. We can thus explicitly demonstrate the effect of an eavesdropper performing an optimal cloning attack or an intercept-resend attack during a quantum cryptographic protocol. Moreover, our study shows that quantum process tomography enables a more detailed understanding of the channel conditions compared to a coarse-grained measure, such as quantum bit error rates. This full characterization technique allows us to optimize the performance of quantum key distribution under asymmetric experimental conditions, which is particularly useful when considering high-dimensional encoding schemes.
Quantum state tomography is the conventional method used to characterize density matrices for general quantum states. However, the data acquisition time generally scales linearly with the dimension of the Hilbert space, hindering the possibility of d
Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this wo
The accuracy of estimating $d$-dimensional quantum states is limited by the Gill-Massar bound. It can be saturated in the qubit ($d=2$) scenario using adaptive standard quantum tomography. In higher dimensions, however, this is not the case and the a
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measure
We present a compressive quantum process tomography scheme that fully characterizes any rank-deficient completely-positive process with no a priori information about the process apart from the dimension of the system on which the process acts. It use