ﻻ يوجد ملخص باللغة العربية
We analyze the nonlinear carrier transport in the gated graphene-phosphorene (G-P) hybrid structures - the G-P field-effect transistors (G-P-FETs) using a phenomenological model. This model assumes that due to high carrier densities in the G-P-channel, the carrier system, including the electrons and holes in both the G- and P-layers, is characterized by a single effective temperature. We demonstrate that a strong electric-field dependence of the G-P-channel conductivity and substantially non-linear current-voltage characteristics, exhibiting a negative differential conductivity, are associated with the carrier heating and the real-space carrier transfer between the G- and P-layers. The predicted features of the G-P-systems can be used in the detectors and sources of electromagnetic radiation and in the logical circuits.
We investigated negative photoconductivity in graphene using ultrafast terahertz techniques. Infrared transmission was used to determine the Fermi energy, carrier density and mobility of p-type CVD graphene samples. Time-resolved terahertz photocondu
We address the tunneling current in a graphene-hBN-graphene heterostructure as function of the twisting between the crystals. The twisting induces a modulation of the hopping amplitude between the graphene layers, that provides the extra momentum nec
The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strongly layer-dependent
The dynamic processes in the surface layers of metals subjected activity of a pulsing laser irradiation, which destroyed not the crystalline structure in details surveyed. The procedure of calculation of a dislocation density generated in bulk of met
Combining graphene with other novel layered materials is a possible way for engineering the band structure of charge carriers. Strong spin-orbit coupling in BiTeX compounds and the recent fabrication of a single layer of BiTeI points towards a feasib