ﻻ يوجد ملخص باللغة العربية
We publish an extension of openQCD-1.6 with AVX-512 vector instructions using Intel intrinsics. Recent Intel processors support extended instruction sets with operations on 512-bit wide vectors, increasing both the capacity for floating point operations and register memory. Optimal use of the new capabilities requires reorganising data and floating point operations into these wider vector units. We report on the implementation and performance of the AVX-512 OpenQCD extension on clusters using Intel Knights Landing and Xeon Scalable (Skylake) CPUs. In complete HMC trajectories with physically relevant parameters we observe a performance increase of 5% to 10%.
We investigate implementation of lattice Quantum Chromodynamics (QCD) code on the Intel AVX-512 architecture. The most time consuming part of the numerical simulations of lattice QCD is a solver of linear equation for a large sparse matrix that repre
This work describes the SIMD vectorization of the force calculation of the Lennard-Jones potential with Intel AVX2 and AVX-512 instruction sets. Since the force-calculation kernel of the molecular dynamics method involves indirect access to memory, t
An extension of the Luschers finite volume method above inelastic thresholds is proposed. It is fulfilled by extendind the procedure recently proposed by HAL-QCD Collaboration for a single channel system. Focusing on the asymptotic behaviors of the N
We investigate recently proposed method for locating critical temperatures and introduce some modifications which allow to formulate exact criterion for any self-dual model. We apply the modified method for the Ashkin-Teller model and show that the e
Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of