ﻻ يوجد ملخص باللغة العربية
Given a locally compact abelian group $G$ and a closed subgroup $Lambda$ in $Gtimeswidehat{G}$, Rieffel associated to $Lambda$ a Hilbert $C^*$-module $mathcal{E}$, known as a Heisenberg module. He proved that $mathcal{E}$ is an equivalence bimodule between the twisted group $C^*$-algebra $C^*(Lambda,textsf{c})$ and $C^*(Lambda^circ,bar{textsf{c}})$, where $Lambda^{circ}$ denotes the adjoint subgroup of $Lambda$. Our main goal is to study Heisenberg modules using tools from time-frequency analysis and pointing out that Heisenberg modules provide the natural setting of the duality theory of Gabor systems. More concretely, we show that the Feichtinger algebra ${textbf{S}}_{0}(G)$ is an equivalence bimodule between the Banach subalgebras ${textbf{S}}_{0}(Lambda,textsf{c})$ and ${textbf{S}}_{0}(Lambda^{circ},bar{textsf{c}})$ of $C^*(Lambda,textsf{c})$ and $C^*(Lambda^circ,bar{textsf{c}})$, respectively. Further, we prove that ${textbf{S}}_{0}(G)$ is finitely generated and projective exactly for co-compact closed subgroups $Lambda$. In this case the generators $g_1,ldots,g_n$ of the left ${textbf{S}}_{0}(Lambda)$-module ${textbf{S}}_{0}(G)$ are the Gabor atoms of a multi-window Gabor frame for $L^2(G)$. We prove that this is equivalent to $g_1,ldots,g_n$ being a Gabor super frame for the closed subspace generated by the Gabor system for $Lambda^{circ}$. This duality principle is of independent interest and is also studied for infinitely many Gabor atoms. We also show that for any non-rational lattice $Lambda$ in $mathbb{R}^{2m}$ with volume ${s}(Lambda)<1$ there exists a Gabor frame generated by a single atom in ${textbf{S}}_{0}(mathbb{R}^m)$.
This paper is a contribution to frame theory. Frames in a Hilbert space are generalizations of orthonormal bases. In particular, Gabor frames of $L^2(mathbb{R})$, which are made of translations and modulations of one or more windows, are often used i
The main purpose of the paper is to give a characterization of all compactly supported dual windows of a Gabor frame. As an application, we consider an iterative procedure for approximation of the canonical dual window via compactly supported dual wi
In the past decade, significant progress has been made to generalize classical tools from Fourier analysis to analyze and process signals defined on networks. In this paper, we propose a new framework for constructing Gabor-type frames for signals on
We generalize Feichtinger and Kaiblingers theorem on linear deformations of uniform Gabor frames to the setting of a locally compact abelian group $G$. More precisely, we show that Gabor frames over lattices in the time-frequency plane of $G$ with wi
In 2012 Gu{a}vruc{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $mathcal{H}$, in order to decompose its range $mathcal{R}(K)$ with a frame-like expansion. In this article we revisit