ﻻ يوجد ملخص باللغة العربية
This work constructs a discrete random variable that, when conditioned upon, ensures information stability of quasi-images. Using this construction, a new methodology is derived to obtain information theoretic necessary conditions directly from operational requirements. In particular, this methodology is used to derive new necessary conditions for keyed authentication over discrete memoryless channels and to establish the capacity region of the wiretap channel, subject to finite leakage and finite error, under two different secrecy metrics. These examples establish the usefulness of the proposed methodology.
Given two random variables $X$ and $Y$, an operational approach is undertaken to quantify the ``leakage of information from $X$ to $Y$. The resulting measure $mathcal{L}(X !! to !! Y)$ is called emph{maximal leakage}, and is defined as the multiplica
A well-known technique in estimating probabilities of rare events in general and in information theory in particular (used, e.g., in the sphere-packing bound), is that of finding a reference probability measure under which the event of interest has p
During the last two decades, concentration of measure has been a subject of various exciting developments in convex geometry, functional analysis, statistical physics, high-dimensional statistics, probability theory, information theory, communication
We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these
A communication setup is considered where a transmitter wishes to convey a message to a receiver and simultaneously estimate the state of that receiver through a common waveform. The state is estimated at the transmitter by means of generalized feedb