ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid stars from the NJL model with a tensor interaction

75   0   0.0 ( 0 )
 نشر من قبل Hiroaki Matsuoka
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to obtain the equation of state and construct hybrid stars, we calculate the thermodynamic potential in the two-flavor Nambu--Jona-Lasinio model with tensor-type four-point interaction between quarks. In addition, we impose the beta equilibrium and charge neutrality conditions on the system. We show that the tensor condensate appears at large chemical potential, however, it is difficult to hold hybrid stars with two-solar mass by using the equation of state with the tensor interaction. Although we cannot obtain the stars with two-solar mass because of the absense of the repulsive interaction, the estimated magnetic moment density is very large. Therefore, we expect that the tensor interaction descrobes the magnetic fields of compact stars.



قيم البحث

اقرأ أيضاً

To obtain the equation of state of quark matter and construct hybrid stars, we calculate the thermodynamic potential in the three-flavor Nambu-Jona-Lasinio model including the tensor-type four-point interaction and the Kobayashi-Maskawa-t Hooft inter action. To construct the hybrid stars, it is necessary to impose the beta-equilibrium and charge neutrality conditions on the system. It is shown that tensor condensed phases appear at large chemical potential. Under the possibility of the existence of the tensor condensates, the relationship between the radius and mass of hybrid stars is estimated.
242 - R. D. Bowler , M. C. Birse 1994
We solve a nonlocal generalisation of the NJL model in the Hartree approximation. This model has a separable interaction, as suggested by instanton models of the QCD vacuum. The choice of form factor in this interaction is motivated by the confining nature of the vacuum. A conserved axial current is constructed in the chiral limit of the model and the pion properties are shown to satisfy the Gell-Mann--Oakes--Renner relation. For reasonable values of the parameters the model exhibits quark confinement.
149 - Kouji Kashiwa 2007
We study the interplay of the chiral and the color superconducting phase transitions in an extended Nambu--Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the omega^2 interaction to produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach.
Our understanding of the dynamics and the phase structure of dense strong-interaction matter is to a large extent still built on the analysis of low-energy models, such as those of the Nambu-Jona-Lasinio-type. In this work, we analyze the emergence o f the latter class of models at intermediate and low energy scales from fundamental quark-gluon interactions. To this end, we study the renormalization group flow of a Fierz-complete set of four-quark interactions and monitor their strength at finite temperature and quark chemical potential. At small quark chemical potential, we find that the scalar-pseudoscalar interaction channel is dynamically rendered most dominant by the gauge degrees of freedom, indicating the formation of a chiral condensate. Moreover, the inclusion of quark-gluon interactions leaves a significant imprint on the dynamics as measured by the curvature of the finite-temperature phase boundary which we find to be in accordance with lattice QCD results. At large quark chemical potential, we then observe that the dominance pattern of the four-quark couplings is changed by the underlying quark-gluon dynamics, without any fine-tuning of the four-quark couplings. In this regime, the scalar-pseudoscalar interaction channel becomes subleading and the dominance pattern suggests the formation of a chirally symmetric diquark condensate. In particular, our study confirms the importance of explicit $U_{mathrm{A}}(1)$ breaking for the formation of this type of condensate at high densities.
134 - Lu-Meng Liu , Jun Xu , 2021
With the isovector coupling constants adjusted to reproduce the physical pion mass and lattice QCD results in baryon-free quark matter, we have carried out rigourous calculations for the pion condensate in the 3-flavor Nambu-Jona-Lasinio model, and s tudied the 3-dimensional QCD phase diagram. With the increasing isospin chemical potential $mu_I$, we have observed two nonzero solutions of the pion condensate at finite baryon chemical potentials $mu_B$, representing respectively the pion superfluid phase and the Sarma phase, and their appearance and disappearance correspond to a second-order (first-order) phase transition at higher (lower) temperatures $T$ and lower (higher) $mu_B$. Calculations by assuming equal constituent mass of $u$ and $d$ quarks would lead to large errors of the QCD phase diagram within $mu_B in (500, 900)$ MeV, and affect the position of the critical end point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا