ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Whole Slide Segmentation Through Visual Context - A Systematic Study

110   0   0.0 ( 0 )
 نشر من قبل Korsuk Sirinukunwattana
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While challenging, the dense segmentation of histology images is a necessary first step to assess changes in tissue architecture and cellular morphology. Although specific convolutional neural network architectures have been applied with great success to the problem, few effectively incorporate visual context information from multiple scales. With this paper, we present a systematic comparison of different architectures to assess how including multi-scale information affects segmentation performance. A publicly available breast cancer and a locally collected prostate cancer datasets are being utilised for this study. The results support our hypothesis that visual context and scale play a crucial role in histology image classification problems.



قيم البحث

اقرأ أيضاً

67 - Siyan Tao , Yao Guo , Chuang Zhu 2019
In this paper, we propose a novel method for highly efficient follicular segmentation of thyroid cytopathological WSIs. Firstly, we propose a hybrid segmentation architecture, which integrates a classifier into Deeplab V3 by adding a branch. A large amount of the WSI segmentation time is saved by skipping the irrelevant areas using the classification branch. Secondly, we merge the low scale fine features into the original atrous spatial pyramid pooling (ASPP) in Deeplab V3 to accurately represent the details in cytopathological images. Thirdly, our hybrid model is trained by a criterion-oriented adaptive loss function, which leads the model converging much faster. Experimental results on a collection of thyroid patches demonstrate that the proposed model reaches 80.9% on the segmentation accuracy. Besides, 93% time is reduced for the WSI segmentation by using our proposed method, and the WSI-level accuracy achieves 53.4%.
Multiple instance learning (MIL) is the preferred approach for whole slide image classification. However, most MIL approaches do not exploit the interdependencies of tiles extracted from a whole slide image, which could provide valuable cues for clas sification. This paper presents a novel MIL approach that exploits the spatial relationship of tiles for classifying whole slide images. To do so, a sparse map is built from tiles embeddings, and is then classified by a sparse-input CNN. It obtained state-of-the-art performance over popular MIL approaches on the classification of cancer subtype involving 10000 whole slide images. Our results suggest that the proposed approach might (i) improve the representation learning of instances and (ii) exploit the context of instance embeddings to enhance the classification performance. The code of this work is open-source at {github censored for review}.
Consecutive thin sections of tissue samples make it possible to study local variation in e.g. protein expression and tumor heterogeneity by staining for a new protein in each section. In order to compare and correlate patterns of different proteins, the images have to be registered with high accuracy. The problem we want to solve is registration of gigapixel whole slide images (WSI). This presents 3 challenges: (i) Images are very large; (ii) Thin sections result in artifacts that make global affine registration prone to very large local errors; (iii) Local affine registration is required to preserve correct tissue morphology (local size, shape and texture). In our approach we compare WSI registration based on automatic and manual feature selection on either the full image or natural sub-regions (as opposed to square tiles). Working with natural sub-regions, in an interactive tool makes it possible to exclude regions containing scientifically irrelevant information. We also present a new way to visualize local registration quality by a Registration Confidence Map (RCM). With this method, intra-tumor heterogeneity and charateristics of the tumor microenvironment can be observed and quantified.
Segmenting histology images into diagnostically relevant regions is imperative to support timely and reliable decisions by pathologists. To this end, computer-aided techniques have been proposed to delineate relevant regions in scanned histology slid es. However, the techniques necessitate task-specific large datasets of annotated pixels, which is tedious, time-consuming, expensive, and infeasible to acquire for many histology tasks. Thus, weakly-supervised semantic segmentation techniques are proposed to utilize weak supervision that is cheaper and quicker to acquire. In this paper, we propose SegGini, a weakly supervised segmentation method using graphs, that can utilize weak multiplex annotations, i.e. inexact and incomplete annotations, to segment arbitrary and large images, scaling from tissue microarray (TMA) to whole slide image (WSI). Formally, SegGini constructs a tissue-graph representation for an input histology image, where the graph nodes depict tissue regions. Then, it performs weakly-supervised segmentation via node classification by using inexact image-level labels, incomplete scribbles, or both. We evaluated SegGini on two public prostate cancer datasets containing TMAs and WSIs. Our method achieved state-of-the-art segmentation performance on both datasets for various annotation settings while being comparable to a pathologist baseline.
Convolutional neural networks, the state of the art for image segmentation, have been successfully applied to histology images by many computational researchers. However, the translatability of this technology to clinicians and biological researchers is limited due to the complex and undeveloped user interface of the code, as well as the extensive computer setup required. As an extension of our previous work (arXiv:1812.07509), we have developed a tool for segmentation of whole slide images (WSIs) with an easy to use graphical user interface. Our tool runs a state-of-the-art convolutional neural network for segmentation of WSIs in the cloud. Our plugin is built on the open source tool HistomicsTK by Kitware Inc. (Clifton Park, NY), which provides remote data management and viewing abilities for WSI datasets. The ability to access this tool over the internet will facilitate widespread use by computational non-experts. Users can easily upload slides to a server where our plugin is installed and perform human in the loop segmentation analysis remotely. This tool is open source, and has the ability to be adapted to segment of any pathological structure. For a proof of concept, we have trained it to segment glomeruli from renal tissue images, achieving an F-score > 0.97 on holdout tissue slides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا