ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal Limits of Privacy in Human Behavior

66   0   0.0 ( 0 )
 نشر من قبل H{\\aa}kan Jonsson
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-scale collection of human behavioral data by companies raises serious privacy concerns. We show that behavior captured in the form of application usage data collected from smartphones is highly unique even in very large datasets encompassing millions of individuals. This makes behavior-based re-identification of users across datasets possible. We study 12 months of data from 3.5 million users and show that four apps are enough to uniquely re-identify 91.2% of users using a simple strategy based on public information. Furthermore, we show that there is seasonal variability in uniqueness and that application usage fingerprints drift over time at an average constant rate.



قيم البحث

اقرأ أيضاً

In recent years, the amount of information collected about human beings has increased dramatically. This development has been partially driven by individuals posting and storing data about themselves and friends using online social networks or collec ting their data for self-tracking purposes (quantified-self movement). Across the sciences, researchers conduct studies collecting data with an unprecedented resolution and scale. Using computational power combined with mathematical models, such rich datasets can be mined to infer underlying patterns, thereby providing insights into human nature. Much of the data collected is sensitive. It is private in the sense that most individuals would feel uncomfortable sharing their collected personal data publicly. For this reason, the need for solutions to ensure the privacy of the individuals generating data has grown alongside the data collection efforts. Out of all the massive data collection efforts, this paper focuses on efforts directly instrumenting human behavior, and notes that -- in many cases -- the privacy of participants is not sufficiently addressed. For example, study purposes are often not explicit, informed consent is ill-defined, and security and sharing protocols are only partially disclosed. This paper provides a survey of the work related to addressing privacy issues in research studies that collect detailed sensor data on human behavior. Reflections on the key problems and recommendations for future work are included. We hope the overview of the privacy-related practices in massive data collection studies can be used as a frame of reference for practitioners in the field. Although focused on data collection in an academic context, we believe that many of the challenges and solutions we identify are also relevant and useful for other domains where massive data collection takes place, including businesses and governments.
We seek to align agent behavior with a users objectives in a reinforcement learning setting with unknown dynamics, an unknown reward function, and unknown unsafe states. The user knows the rewards and unsafe states, but querying the user is expensive . To address this challenge, we propose an algorithm that safely and interactively learns a model of the users reward function. We start with a generative model of initial states and a forward dynamics model trained on off-policy data. Our method uses these models to synthesize hypothetical behaviors, asks the user to label the behaviors with rewards, and trains a neural network to predict the rewards. The key idea is to actively synthesize the hypothetical behaviors from scratch by maximizing tractable proxies for the value of information, without interacting with the environment. We call this method reward query synthesis via trajectory optimization (ReQueST). We evaluate ReQueST with simulated users on a state-based 2D navigation task and the image-based Car Racing video game. The results show that ReQueST significantly outperforms prior methods in learning reward models that transfer to new environments with different initial state distributions. Moreover, ReQueST safely trains the reward model to detect unsafe states, and corrects reward hacking before deploying the agent.
Mobile phone metadata is increasingly used for humanitarian purposes in developing countries as traditional data is scarce. Basic demographic information is however often absent from mobile phone datasets, limiting the operational impact of the datas ets. For these reasons, there has been a growing interest in predicting demographic information from mobile phone metadata. Previous work focused on creating increasingly advanced features to be modeled with standard machine learning algorithms. We here instead model the raw mobile phone metadata directly using deep learning, exploiting the temporal nature of the patterns in the data. From high-level assumptions we design a data representation and convolutional network architecture for modeling patterns within a week. We then examine three strategies for aggregating patterns across weeks and show that our method reaches state-of-the-art accuracy on both age and gender prediction using only the temporal modality in mobile metadata. We finally validate our method on low activity users and evaluate the modeling assumptions.
The introduction of robots into our society will also introduce new concerns about personal privacy. In order to study these concerns, we must do human-subject experiments that involve measuring privacy-relevant constructs. This paper presents a taxo nomy of privacy constructs based on a review of the privacy literature. Future work in operationalizing privacy constructs for HRI studies is also discussed.
384 - Karen Levy , Bruce Schneier 2020
This article provides an overview of intimate threats: a class of privacy threats that can arise within our families, romantic partnerships, close friendships, and caregiving relationships. Many common assumptions about privacy are upended in the con text of these relationships, and many otherwise effective protective measures fail when applied to intimate threats. Those closest to us know the answers to our secret questions, have access to our devices, and can exercise coercive power over us. We survey a range of intimate relationships and describe their common features. Based on these features, we explore implications for both technical privacy design and policy, and offer design recommendations for ameliorating intimate privacy risks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا