ترغب بنشر مسار تعليمي؟ اضغط هنا

Corpus Conversion Service: A Machine Learning Platform to Ingest Documents at Scale

108   0   0.0 ( 0 )
 نشر من قبل Michele Dolfi
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past few decades, the amount of scientific articles and technical literature has increased exponentially in size. Consequently, there is a great need for systems that can ingest these documents at scale and make the contained knowledge discoverable. Unfortunately, both the format of these documents (e.g. the PDF format or bitmap images) as well as the presentation of the data (e.g. complex tables) make the extraction of qualitative and quantitive data extremely challenging. In this paper, we present a modular, cloud-based platform to ingest documents at scale. This platform, called the Corpus Conversion Service (CCS), implements a pipeline which allows users to parse and annotate documents (i.e. collect ground-truth), train machine-learning classification algorithms and ultimately convert any type of PDF or bitmap-documents to a structured content representation format. We will show that each of the modules is scalable due to an asynchronous microservice architecture and can therefore handle massive amounts of documents. Furthermore, we will show that our capability to gather ground-truth is accelerated by machine-learning algorithms by at least one order of magnitude. This allows us to both gather large amounts of ground-truth in very little time and obtain very good precision/recall metrics in the range of 99% with regard to content conversion to structured output. The CCS platform is currently deployed on IBM internal infrastructure and serving more than 250 active users for knowledge-engineering project engagements.



قيم البحث

اقرأ أيضاً

Over the past few decades, the amount of scientific articles and technical literature has increased exponentially in size. Consequently, there is a great need for systems that can ingest these documents at scale and make their content discoverable. U nfortunately, both the format of these documents (e.g. the PDF format or bitmap images) as well as the presentation of the data (e.g. complex tables) make the extraction of qualitative and quantitive data extremely challenging. We present a platform to ingest documents at scale which is powered by Machine Learning techniques and allows the user to train custom models on document collections. We show precision/recall results greater than 97% with regard to conversion to structured formats, as well as scaling evidence for each of the microservices constituting the platform.
Big data analytics is gaining massive momentum in the last few years. Applying machine learning models to big data has become an implicit requirement or an expectation for most analysis tasks, especially on high-stakes applications.Typical applicatio ns include sentiment analysis against reviews for analyzing on-line products, image classification in food logging applications for monitoring users daily intake and stock movement prediction. Extending traditional database systems to support the above analysis is intriguing but challenging. First, it is almost impossible to implement all machine learning models in the database engines. Second, expertise knowledge is required to optimize the training and inference procedures in terms of efficiency and effectiveness, which imposes heavy burden on the system users. In this paper, we develop and present a system, called Rafiki, to provide the training and inference service of machine learning models, and facilitate complex analytics on top of cloud platforms. Rafiki provides distributed hyper-parameter tuning for the training service, and online ensemble modeling for the inference service which trades off between latency and accuracy. Experimental results confirm the efficiency, effectiveness, scalability and usability of Rafiki.
In this paper, we present Fedlearn-Algo, an open-source privacy preserving machine learning platform. We use this platform to demonstrate our research and development results on privacy preserving machine learning algorithms. As the first batch of no vel FL algorithm examples, we release vertical federated kernel binary classification model and vertical federated random forest model. They have been tested to be more efficient than existing vertical federated learning models in our practice. Besides the novel FL algorithm examples, we also release a machine communication module. The uniform data transfer interface supports transferring widely used data formats between machines. We will maintain this platform by adding more functional modules and algorithm examples. The code is available at https://github.com/fedlearnAI/fedlearn-algo.
Statistical learning algorithms are finding more and more applications in science and technology. Atomic-scale modeling is no exception, with machine learning becoming commonplace as a tool to predict energy, forces and properties of molecules and co ndensed-phase systems. This short review summarizes recent progress in the field, focusing in particular on the problem of representing an atomic configuration in a mathematically robust and computationally efficient way. We also discuss some of the regression algorithms that have been used to construct surrogate models of atomic-scale properties. We then show examples of how the optimization of the machine-learning models can both incorporate and reveal insights onto the physical phenomena that underlie structure-property relations.
108 - Siyao Peng , Yang Liu , Yilun Zhu 2020
Adpositions are frequent markers of semantic relations, but they are highly ambiguous and vary significantly from language to language. Moreover, there is a dearth of annotated corpora for investigating the cross-linguistic variation of adposition se mantics, or for building multilingual disambiguation systems. This paper presents a corpus in which all adpositions have been semantically annotated in Mandarin Chinese; to the best of our knowledge, this is the first Chinese corpus to be broadly annotated with adposition semantics. Our approach adapts a framework that defined a general set of supersenses according to ostensibly language-independent semantic criteria, though its development focused primarily on English prepositions (Schneider et al., 2018). We find that the supersense categories are well-suited to Chinese adpositions despite syntactic differences from English. On a Mandarin translation of The Little Prince, we achieve high inter-annotator agreement and analyze semantic correspondences of adposition tokens in bitext.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا