ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of electroweak parameters in polarised deep-inelastic scattering at HERA

74   0   0.0 ( 0 )
 نشر من قبل Stefan Schmitt
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The parameters of the electroweak theory are determined in a combined electroweak and QCD analysis using all deep-inelastic $e^+p$ and $e^-p$ neutral current and charged current scattering cross sections published by the H1 Collaboration, including data with longitudinally polarised lepton beams. Various fits to Standard Model parameters in the on-shell scheme are performed. The mass of the $W$ boson is determined as $m(W)=80.520pm 0.115$ GeV. The axial-vector and vector couplings of the light quarks to the $Z$ boson are also determined. Both results improve the precision of previous H1 determinations based on HERA-I data by about a factor of two. Possible scale dependence of the weak coupling parameters in both neutral and charged current interactions beyond the Standard Model is also studied. All results are found to be consistent with the Standard Model expectations.



قيم البحث

اقرأ أيضاً

336 - Zhiqing Zhang 2014
This contribution covers three recent results on deep-inelastic scattering at HERA: (i) new measurements of the proton longitudinal structure function $F_L$ from H1 and ZEUS experiments, (ii) a dedicated NC cross section measurement from ZEUS in the region of high Bjorken $x$, and (iii) preliminary combination results of all HERA inclusive data published up to now by H1 and ZEUS, taking into account the experimental correlations between measurements.
A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5<Q^2<80,{rm GeV}^2$ and inelasticities $0.2<y<0.6$ is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of $290,{rm pb}^{-1}$. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150<Q^2<15,000,{rm GeV}^2$ are extended to low transverse jet momenta $5<P_{T}^{rm jet}<7,{rm GeV}$. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of $Q^2$, the strong coupling constant $alpha_s(M_Z)$ is determined in next-to-leading order.
101 - C. Glasman 2003
Recent results from jet production in deep inelastic ep scattering at HERA are reviewed. The values of alpha_s(M_z) extracted from a QCD analysis of the data are presented.
Charm production in charged current deep inelastic scattering has been measured for the first time in $e^{pm}p$ collisions, using data collected with the ZEUS detector at HERA, corresponding to an integrated luminosity of $358 pb^{-1}$. Results are p resented separately for $e^{+}p$ and $e^{-}p$ scattering at a centre-of-mass energy of $sqrt{s} = 318 GeV$ within a kinematic phase-space region of $200 GeV^{2}<Q^{2}<60000 GeV^{2}$ and $y<0.9$, where $Q^{2}$ is the squared four-momentum transfer and $y$ is the inelasticity. The measured cross sections of electroweak charm production are consistent with expectations from the Standard Model within the large statistical uncertainties.
Production of exclusive dijets in diffractive deep inelastic $e^pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $gamma^*-p$ centre-of-mass energies i n the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $beta$ and $phi$, where $beta=x/x_{rm I!P}$, $x$ is the Bjorken variable and $x_{rm I!P}$ is the proton fractional longitudinal momentum loss. The angle $phi$ is defined by the $gamma^*-$dijet plane and the $gamma^*-e^pm$ plane in the rest frame of the diffractive final state. The $phi$ cross section is measured in bins of $beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا