The methane distribution and polar brightening on Uranus based on HST/STIS, Keck/NIRC2, and IRTF/SpeX observations through 2015


الملخص بالإنكليزية

HST/STIS observations of Uranus in 2015 show that the depletion of upper tropospheric methane has been relatively stable and that the polar region has been brightening over time as a result of increased aerosol scattering. This interpretation is confirmed by near-IR imaging from HST and from the Keck telescope using NIRC2 adaptive optics imaging. Our analysis of the 2015 spectra, as well as prior spectra from 2012, shows that there is a factor of three decrease in the effective upper tropospheric methane mixing ratio between 30deg N and 70deg N. The absolute value of the deep methane mixing ratio, which probably does not vary with latitude, is lower than our previous estimate, and depends significantly on the style of aerosol model that we assume, ranging from a high of 3.5$pm$0.5% for conservative non-spherical particles with a simple Henyey-Greenstein phase function to a low of 2.7%$pm$0.3% for conservative spherical particles. Our previous higher estimate of 4$pm$0.5% was a result of a forced consistency with occultation results of Lindal et al. (1987, JGR 92, 14987-15001). That requirement was abandoned in our new analysis because new work by Orton et al. (2014, Icarus 243, 494-513) and by Lellouch et al. (2015, Astron. & AstroPhys. 579, A121) called into question the occultation results. For the main cloud layer in our models we found that both large and small particle solutions are possible for spherical particle models. At low latitudes the small-particle solution has a mean particle radius near 0.3 $mu$m, a real refractive index near 1.65, and a total column mass of 0.03 mg/cm$^2$, while the large-particle solution has a particle radius near 1.5 $mu$m, a real index near 1.24, and a total column mass 30 times larger. The pressure boundaries of the main cloud layer are between about 1.1 and 3 bars, within which H$_2$S is the most plausible condensable.

تحميل البحث