ﻻ يوجد ملخص باللغة العربية
Steady-state pair correlations between inelastic granular beads in a vertically shaken, quasi two-dimensional cell can be mapped onto the particle correlations in a truly two-dimensional reference fluid in thermodynamic equilibrium. Using Granular Dynamics simulations and Iterative Ornstein--Zernike Inversion, we demonstrate that this mapping applies in a wide range of particle packing fractions and restitution coefficients, and that the conservative reference particle interactions are simpler than it has been reported earlier. The effective potential appears to be a smooth, concave function of the particle distance $r$. At low packing fraction, the shape of the effective potential is compatible with a one-parametric fit function proportional to $r^{-2}$.
The Navier--Stokes transport coefficients for a model of a confined quasi-two-dimensional granular binary mixture of inelastic hard spheres are determined from the Boltzmann kinetic equation. A normal or hydrodynamic solution to the Boltzmann equatio
We present experimental results on the shape of arches that block the outlet of a two dimensional silo. For a range of outlet sizes, we measure some properties of the arches such as the number of particles involved, the span, the aspect ratio, and th
A Molecular Dynamics approach has been used to compute the shear force resulting from the shearing of disks. Two-dimensional monodisperse disks have been put in an horizontal and rectangular shearing cell with periodic boundary conditions on right an
This paper continues the investigation of the exponentially repulsive EXP pair-potential system of Paper I with a focus on isomorphs in the low-temperature gas and liquid phases. As expected from the EXP systems strong virial potential-energy correla
We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with square symmetry were found