ﻻ يوجد ملخص باللغة العربية
New methods have been recently developed to search for strong gravitational lenses, in particular lensed quasars, in wide-field imaging surveys. Here, we compare the performance of three different, morphology- and photometry- based methods to find lens candidates over the Kilo-Degree Survey (KiDS) DR3 footprint (440 deg$^2$). The three methods are: i) a multiplet detection in KiDS-DR3 and/or Gaia-DR1, ii) direct modeling of KiDS cutouts and iii) positional offsets between different surveys (KiDS-vs-Gaia, Gaia-vs-2MASS), with purpose-built astrometric recalibrations. The first benchmark for the methods has been set by the recovery of known lenses. We are able to recover seven out of ten known lenses and pairs of quasars observed in the KiDS DR3 footprint, or eight out of ten with improved selection criteria and looser colour pre-selection. This success rate reflects the combination of all methods together, which, taken individually, performed significantly worse (four lenses each). One movelty of our analysis is that the comparison of the performances of the different methods has revealed the pros and cons of the approaches and, most of all, the complementarities. We finally provide a list of high-grade candidates found by one or more methods, awaiting spectroscopic follow-up for confirmation. Of these, KiDS 1042+0023 is to our knowledge the first confirmed lensed quasar from KiDS, exhibiting two quasar spectra at the same source redshift at either sides of a red galaxy, with uniform flux-ratio $fapprox1.25$ over the wavelength range $0.45mumathrm{m}<lambda<0.75mumathrm{m}.$
The KiDS Strongly lensed QUAsar Detection project (KiDS-SQuaD) aims at finding as many previously undiscovered gravitational lensed quasars as possible in the Kilo Degree Survey. This is the second paper of this series where we present a new, automat
We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epoch
The Galaxy And Mass Assembly Survey (GAMA) covers five fields with highly complete spectroscopic coverage ($>95$ per cent) to intermediate depths ($r<19.8$ or $i < 19.0$ mag), and collectively spans 250 square degrees of Equatorial or Southern sky. F
Measuring cosmic shear in wide-field imaging surveys requires accurate knowledge of the redshift distribution of all sources. The clustering-redshift technique exploits the angular cross-correlation of a target galaxy sample with unknown redshifts an
Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies fro