ﻻ يوجد ملخص باللغة العربية
Previous work (S. Davidovits and N. J. Fisch, Sudden viscous dissipation of compressing turbulence, Phys. Rev. Lett., 116(105004), 2016) demonstrated that the compression of a turbulent field can lead to a sudden viscous dissipation of turbulent kinetic energy (TKE), and suggested this mechanism could potentially be used to design new fast-ignition schemes for inertial confinement fusion. We expand on previous work by accounting for finite Mach numbers, rather than relying on a zero-Mach-limit assumption as previously done. The finite-Mach-number formulation is necessary to capture a self-consistent feedback mechanism in which dissipated TKE increases the temperature of the system, which in turn modifies the viscosity and thus the TKE dissipation itself. Direct numerical simulations with a tenth-order accurate Pade scheme were carried out to analyze this self-consistent feedback loop for compressing turbulence. Results show that, for finite Mach numbers, the sudden viscous dissipation of TKE still occurs, both for the solenoidal and dilatational turbulent fields. As the domain is compressed, oscillations in dilatational TKE are encountered due to the highly-oscillatory nature of the pressure dilatation. An analysis of the source terms for the internal energy shows that the mechanical work term dominates the viscous turbulent dissipation. As a result, the effect of the suddenly dissipated TKE on temperature is minimal for the Mach numbers tested. Moreover, an analytical expression is derived that confirms the dissipated TKE does not significantly alter the temperature evolution for low Mach numbers, regardless of compression speed. The self-consistent feedback mechanism is thus quite weak for subsonic turbulence, which could limit its applicability for inertial confinement fusion.
We present a simple model for the turbulent kinetic energy behavior of subsonic plasma turbulence undergoing isotropic three-dimensional compression, such as may exist in various inertial confinement fusion experiments or astrophysical settings. The
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor
Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibr
We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydrodynamics formulation for multicomponent charged species. The low Mach number approach eliminates sound waves from the fully compressible equations leading
A systematic study of the influence of the viscous effect on both the spectra and the nonlinear fluxes of conserved as well as non conserved quantities in Navier-Stokes turbulence is proposed. This analysis is used to estimate the helicity dissipatio