ترغب بنشر مسار تعليمي؟ اضغط هنا

Image-Dependent Local Entropy Models for Learned Image Compression

154   0   0.0 ( 0 )
 نشر من قبل David Minnen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The leading approach for image compression with artificial neural networks (ANNs) is to learn a nonlinear transform and a fixed entropy model that are optimized for rate-distortion performance. We show that this approach can be significantly improved by incorporating spatially local, image-dependent entropy models. The key insight is that existing ANN-based methods learn an entropy model that is shared between the encoder and decoder, but they do not transmit any side information that would allow the model to adapt to the structure of a specific image. We present a method for augmenting ANN-based image coders with image-dependent side information that leads to a 17.8% rate reduction over a state-of-the-art ANN-based baseline model on a standard evaluation set, and 70-98% reductions on images with low visual complexity that are poorly captured by a fixed, global entropy model.



قيم البحث

اقرأ أيضاً

Over the past several years, we have witnessed impressive progress in the field of learned image compression. Recent learned image codecs are commonly based on autoencoders, that first encode an image into low-dimensional latent representations and t hen decode them for reconstruction purposes. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to build an entropy model, which estimates the bit-rate for end-to-end rate-distortion optimization. However, such an entropy model is suboptimal from two aspects: (1) It fails to capture spatially global correlations among the latents. (2) Cross-channel relationships of the latents are still underexplored. In this paper, we propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space. A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts. Furthermore, we propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points. Both these two models facilitate entropy estimation without the transmission of overhead. In addition, we further adopt a new separate attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.
We present a learned image compression system based on GANs, operating at extremely low bitrates. Our proposed framework combines an encoder, decoder/generator and a multi-scale discriminator, which we train jointly for a generative learned compressi on objective. The model synthesizes details it cannot afford to store, obtaining visually pleasing results at bitrates where previous methods fail and show strong artifacts. Furthermore, if a semantic label map of the original image is available, our method can fully synthesize unimportant regions in the decoded image such as streets and trees from the label map, proportionally reducing the storage cost. A user study confirms that for low bitrates, our approach is preferred to state-of-the-art methods, even when they use more than double the bits.
123 - David Minnen , Johannes Balle , 2018
Recent models for learned image compression are based on autoencoders, learning approximately invertible mappings from pixels to a quantized latent representation. These are combined with an entropy model, a prior on the latent representation that ca n be used with standard arithmetic coding algorithms to yield a compressed bitstream. Recently, hierarchical entropy models have been introduced as a way to exploit more structure in the latents than simple fully factorized priors, improving compression performance while maintaining end-to-end optimization. Inspired by the success of autoregressive priors in probabilistic generative models, we examine autoregressive, hierarchical, as well as combined priors as alternatives, weighing their costs and benefits in the context of image compression. While it is well known that autoregressive models come with a significant computational penalty, we find that in terms of compression performance, autoregressive and hierarchical priors are complementary and, together, exploit the probabilistic structure in the latents better than all previous learned models. The combined model yields state-of-the-art rate--distortion performance, providing a 15.8% average reduction in file size over the previous state-of-the-art method based on deep learning, which corresponds to a 59.8% size reduction over JPEG, more than 35% reduction compared to WebP and JPEG2000, and bitstreams 8.4% smaller than BPG, the current state-of-the-art image codec. To the best of our knowledge, our model is the first learning-based method to outperform BPG on both PSNR and MS-SSIM distortion metrics.
Deep Neural Networks trained as image auto-encoders have recently emerged as a promising direction for advancing the state-of-the-art in image compression. The key challenge in learning such networks is twofold: To deal with quantization, and to cont rol the trade-off between reconstruction error (distortion) and entropy (rate) of the latent image representation. In this paper, we focus on the latter challenge and propose a new technique to navigate the rate-distortion trade-off for an image compression auto-encoder. The main idea is to directly model the entropy of the latent representation by using a context model: A 3D-CNN which learns a conditional probability model of the latent distribution of the auto-encoder. During training, the auto-encoder makes use of the context model to estimate the entropy of its representation, and the context model is concurrently updated to learn the dependencies between the symbols in the latent representation. Our experiments show that this approach, when measured in MS-SSIM, yields a state-of-the-art image compression system based on a simple convolutional auto-encoder.
Although deep learning based image compression methods have achieved promising progress these days, the performance of these methods still cannot match the latest compression standard Versatile Video Coding (VVC). Most of the recent developments focu s on designing a more accurate and flexible entropy model that can better parameterize the distributions of the latent features. However, few efforts are devoted to structuring a better transformation between the image space and the latent feature space. In this paper, instead of employing previous autoencoder style networks to build this transformation, we propose an enhanced Invertible Encoding Network with invertible neural networks (INNs) to largely mitigate the information loss problem for better compression. Experimental results on the Kodak, CLIC, and Tecnick datasets show that our method outperforms the existing learned image compression methods and compression standards, including VVC (VTM 12.1), especially for high-resolution images. Our source code is available at https://github.com/xyq7/InvCompress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا