ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar and Planetary Characterization of the Ross 128 Exoplanetary System from APOGEE Spectra

56   0   0.0 ( 0 )
 نشر من قبل Diogo Souto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first detailed chemical abundance analysis of the M dwarf (M4.0) exoplanet-hosting star Ross 128 is presented here, based upon near-infrared (1.5--1.7 micron) high-resolution ($R$$sim$22,500) spectra from the SDSS-APOGEE survey. We determined precise atmospheric parameters $T_{rm eff}$=3231$pm$100K, log$g$=4.96$pm$0.11 dex and chemical abundances of eight elements (C, O, Mg, Al, K, Ca, Ti, and Fe), finding Ross 128 to have near solar metallicity ([Fe/H] = +0.03$pm$0.09 dex). The derived results were obtained via spectral synthesis (1-D LTE) adopting both MARCS and PHOENIX model atmospheres; stellar parameters and chemical abundances derived from the different adopted models do not show significant offsets. Mass-radius modeling of Ross 128b indicate that it lies below the pure rock composition curve, suggesting that it contains a mixture of rock and iron, with the relative amounts of each set by the ratio of Fe/Mg. If Ross 128b formed with a sub-solar Si/Mg ratio, and assuming the planets composition matches that of the host-star, it likely has a larger core size relative to the Earth. The derived planetary parameters -- insolation flux (S$_{rm Earth}$=1.79$pm$0.26) and equilibrium temperature ($T_{rm eq}$=294$pm$10K) -- support previous findings that Ross 128b is a temperate exoplanet in the inner edge of the habitable zone.



قيم البحث

اقرأ أيضاً

We present spectroscopic determinations of the effective temperatures, surface gravities and metallicities for 21 M-dwarfs observed at high-resolution (R $sim$ 22,500) in the textit{H}-band as part of the SDSS-IV APOGEE survey. The atmospheric parame ters and metallicities are derived from spectral syntheses with 1-D LTE plane parallel MARCS models and the APOGEE atomic/molecular line list, together with up-to-date H$_{2}$O and FeH molecular line lists. Our sample range in $T_{rm eff}$ from $sim$ 3200 to 3800K, where eleven stars are in binary systems with a warmer (FGK) primary, while the other 10 M-dwarfs have interferometric radii in the literature. We define an $M_{K_{S}}$--Radius calibration based on our M-dwarf radii derived from the detailed analysis of APOGEE spectra and Gaia DR2 distances, as well as a mass-radius relation using the spectroscopically-derived surface gravities. A comparison of the derived radii with interferometric values from the literature finds that the spectroscopic radii are slightly offset towards smaller values, with $Delta$ = -0.01 $pm$ 0.02 $R{star}$/$R_{odot}$. In addition, the derived M-dwarf masses based upon the radii and surface gravities tend to be slightly smaller (by $sim$5-10%) than masses derived for M-dwarf members of eclipsing binary systems for a given stellar radius. The metallicities derived for the 11 M-dwarfs in binary systems, compared to metallicities obtained for their hotter FGK main-sequence primary stars from the literature, shows excellent agreement, with a mean difference of [Fe/H](M-dwarf - FGK primary) = +0.04 $pm$ 0.18 dex, confirming the APOGEE metallicity scale derived here for M-dwarfs.
Tau Boo is an intriguing planet-host star that is believed to undergo magnetic cycles similar to the Sun, but with a duration that is about one order of magnitude smaller than that of the solar cycle. With the use of observationally derived surface m agnetic field maps, we simulate the magnetic stellar wind of Tau Boo by means of three-dimensional MHD numerical simulations. As the properties of the stellar wind depend on the particular characteristics of the stellar magnetic field, we show that the wind varies during the observed epochs of the cycle. Although the mass loss-rates we find (~2.7e-12 Msun/yr) vary less than 3 per cent during the observed epochs of the cycle, our derived angular momentum loss-rates vary from 1.1 to 2.2e32erg. The spin-down times associated to magnetic braking range between 39 and 78Gyr. We also compute the emission measure from the (quiescent) closed corona and show that it remains approximately constant through these epochs at a value of ~10^{50.6} cm^{-3}. This suggests that a magnetic cycle of Tau Boo may not be detected by X-ray observations. We further investigate the interaction between the stellar wind and the planet by estimating radio emission from the hot-Jupiter that orbits at 0.0462 au from Tau Boo. By adopting reasonable hypotheses, we show that, for a planet with a magnetic field similar to Jupiter (~14G at the pole), the radio flux is estimated to be about 0.5-1 mJy, occurring at a frequency of 34MHz. If the planet is less magnetised (field strengths roughly <4G), detection of radio emission from the ground is unfeasible due to the Earths ionospheric cutoff. According to our estimates, if the planet is more magnetised than that and provided the emission beam crosses the observer line-of-sight, detection of radio emission from Tau Boo b is only possible by ground-based instruments with a noise level of < 1 mJy, operating at low frequencies.
The SDSS-III/APOGEE survey operated from 2011-2014 using the APOGEE spectrograph, which collects high-resolution (R~22,500), near-IR (1.51-1.70 microns) spectra with a multiplexing (300 fiber-fed objects) capability. We describe the survey data produ cts that are publicly available, which include catalogs with radial velocity, stellar parameters, and 15 elemental abundances for over 150,000 stars, as well as the more than 500,000 spectra from which these quantities are derived. Calibration relations for the stellar parameters (Teff, log g, [M/H], [alpha/M]) and abundances (C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) are presented and discussed. The internal scatter of the abundances within clusters indicates that abundance precision is generally between 0.05 and 0.09 dex across a broad temperature range; within more limited ranges and at high S/N, it is smaller for some elemental abundances. We assess the accuracy of the abundances using comparison of mean cluster metallicities with literature values, APOGEE observations of the solar spectrum and of Arcturus, comparison of individual star abundances with other measurements, and consideration of the locus of derived parameters and abundances of the entire sample, and find that it is challenging to determine the absolute abundance scale; external accuracy may be good to 0.1-0.2 dex. Uncertainties may be larger at cooler temperatures (Teff<4000K). Access to the public data release and data products is described, and some guidance for using the data products is provided.
Measurements of photometric variability at different wavelengths provide insights into the vertical cloud structure of brown dwarfs and planetary-mass objects. In seven Hubble Space Telescope consecutive orbits, spanning $sim$10 h of observing time}, we obtained time-resolved spectroscopy of the planetary-mass T8-dwarf Ross 458C using the near-infrared Wide Field Camera 3. We found spectrophotometric variability with a peak-to-peak signal of 2.62$pm$0.02 % (in the 1.10-1.60~$mu$m white light curve). Using three different methods, we estimated a rotational period of 6.75$pm$1.58~h for the white light curve, and similar periods for narrow $J$- and $H$- band light curves. Sine wave fits to the narrow $J$- and $H$-band light curves suggest a tentative phase shift between the light curves with wavelength when we allow different periods between both light curves. If confirmed, this phase shift may be similar to the phase shift detected earlier for the T6.5 spectral type 2MASS J22282889-310262. We find that, in contrast with 2M2228, the variability of Ross~458C shows evidence for a {color trend} within the narrow $J$-band, but gray variations in the narrow $H$-band. The spectral time-resolved variability of Ross 458C might be potentially due to heterogeneous sulfide clouds in the atmosphere of the object. Our discovery extends the study of spectral modulations of condensate clouds to the coolest T dwarfs, planetary-mass companions.
Despite the revolution in our knowledge resulting from the detection of planets around mature stars, we know almost nothing about planets orbiting young stars because rapid rotation and active photospheres preclude detection by radial velocities or t ransits and because direct imaging has barely penetrated the requisite range of high contrast and angular resolution. Of the techniques presently under consideration for the coming decade, only space-based astrometry offers the prospect of discovering gas giants (100 to >> 300 Mearth), lower mass systems such as icy giants (10 to 100 Mearth), and even a few rocky, super-Earths 300 Mearth) orbiting stars ranging in age from 1 to 100 Myr. Astrometry will complement high contrast imaging which should be able to detect gas giants (1~10 MJup) in orbits from a few to a few hundred AU. An astrometric survey in combination with imaging data for a subsample of objects will allow a detailed physical understanding of the formation and evolution of young gas giant planets impossible to achieve by any one technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا