ﻻ يوجد ملخص باللغة العربية
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function $p(rho)$ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as $R_1=10.8^{+2.0}_{-1.7}$ km for the heavier star and $R_2= 10.7^{+2.1}_{-1.5}$ km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than $1.97 ,M_odot$ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain $R_1= 11.9^{+1.4}_{-1.4}$ km and $R_2= 11.9^{+1.4}_{-1.4}$ km at the 90% credible level. Finally, we obtain constraints on $p(rho)$ at supranuclear densities, with pressure at twice nuclear saturation density measured at $3.5^{+2.7}_{-1.7}times 10^{34} ,mathrm{dyn}/mathrm{cm}^{2}$ at the 90% level.
We explore in a parameterized manner a very large range of physically plausible equations of state (EOSs) for compact stars for matter that is either purely hadronic or that exhibits a phase transition. In particular, we produce two classes of EOSs w
Observations of the properties of multiple coalescing neutron stars will simultaneously provide insight into neutron star mass and spin distribution, the neutron star merger rate, and the nuclear equation of state. Not all merging binaries containing
We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two Neutron Stars (NS) is $1.4M_{odot}$, descr
Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced