ﻻ يوجد ملخص باللغة العربية
Variational Auto-Encoders (VAEs) have become very popular techniques to perform inference and learning in latent variable models as they allow us to leverage the rich representational power of neural networks to obtain flexible approximations of the posterior of latent variables as well as tight evidence lower bounds (ELBOs). Combined with stochastic variational inference, this provides a methodology scaling to large datasets. However, for this methodology to be practically efficient, it is necessary to obtain low-variance unbiased estimators of the ELBO and its gradients with respect to the parameters of interest. While the use of Markov chain Monte Carlo (MCMC) techniques such as Hamiltonian Monte Carlo (HMC) has been previously suggested to achieve this [23, 26], the proposed methods require specifying reverse kernels which have a large impact on performance. Additionally, the resulting unbiased estimator of the ELBO for most MCMC kernels is typically not amenable to the reparameterization trick. We show here how to optimally select reverse kernels in this setting and, by building upon Hamiltonian Importance Sampling (HIS) [17], we obtain a scheme that provides low-variance unbiased estimators of the ELBO and its gradients using the reparameterization trick. This allows us to develop a Hamiltonian Variational Auto-Encoder (HVAE). This method can be reinterpreted as a target-informed normalizing flow [20] which, within our context, only requires a few evaluations of the gradient of the sampled likelihood and trivial Jacobian calculations at each iteration.
To act and plan in complex environments, we posit that agents should have a mental simulator of the world with three characteristics: (a) it should build an abstract state representing the condition of the world; (b) it should form a belief which rep
The increasing amount of data in astronomy provides great challenges for machine learning research. Previously, supervised learning methods achieved satisfactory recognition accuracy for the star-galaxy classification task, based on manually labeled
We prove that the evidence lower bound (ELBO) employed by variational auto-encoders (VAEs) admits non-trivial solutions having constant posterior variances under certain mild conditions, removing the need to learn variances in the encoder. The proof
Reparameterization of variational auto-encoders with continuous random variables is an effective method for reducing the variance of their gradient estimates. In the discrete case, one can perform reparametrization using the Gumbel-Max trick, but the
Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability