ﻻ يوجد ملخص باللغة العربية
The Legendre-Stirling numbers of the second kind were introduced by Everitt et al. in the spectral theory of powers of the Legendre differential expressions. In this paper, we provide a combinatorial code for Legendre-Stirling set partitions. As an application, we obtain combinatorial expansions of the Legendre-Stirling numbers of both kinds. Moreover, we present grammatical descriptions of the Jacobi-Stirling numbers of both kinds.
We give combinatorial proofs of $q$-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitzs identity, a new proof of the $q$-Frobenius identity of Garsia and Remmel and of Ehrenborgs Hankel $q$-Stirling de
We present combinatorial and analytical results concerning a Sheffer sequence with a generating function of the form $G(x,z)=Q(z)^{x}Q(-z)^{1-x}$, where $Q$ is a quadratic polynomial with real zeros. By using the properties of Riordan matrices we add
Restricted Whitney numbers of the first kind appear in the combinatorial recursion for the matroid Kazhdan-Lusztig polynomials. In the special case of braid matroids (the matroid associated to the partition lattice, the complete graph, the type A Cox
We show that a determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata. The proof involves a bijection from these automata to certain marked lattice paths and a sign-reversing involution to evaluate the determinant.
The distribution of certain Mahonian statistic (called $mathrm{BAST}$) introduced by Babson and Steingr{i}msson over the set of permutations that avoid vincular pattern $1underline{32}$, is shown bijectively to match the distribution of major index o