ﻻ يوجد ملخص باللغة العربية
Discs of gas and dust surrounding young stars are the birthplace of planets. However, direct detection of protoplanets forming within discs has proved elusive to date. We present the detection of a large, localized deviation from Keplerian velocity in the protoplanetary disc surrounding the young star HD163296. The observed velocity pattern is consistent with the dynamical effect of a two Jupiter-mass planet orbiting at a radius $approx$ 260au from the star.
We present high-contrast observations of the circumstellar environment of the Herbig Ae/Be star HD100546. The final 3.8 micron image reveals an emission source at a projected separation of 0.48+-0.04 (corresponding to ~47+-4 AU at a position angle of
We present evidence for localised deviations from Keplerian rotation, i.e., velocity kinks, in 8 of 18 circumstellar disks observed by the DSHARP program: DoAr 25, Elias 2-27, GW Lup, HD 143006, HD 163296, IM Lup, Sz 129 and WaOph 6. Most of the kink
We still do not understand how planets form, or why extra-solar planetary systems are so different from our own solar system. But the last few years have dramatically changed our view of the discs of gas and dust around young stars. Observations with
Using the NASA/IRTF SpeX & BASS spectrometers we have obtained novel 0.7 - 13 um observations of the newly imaged HD36546 debris disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an Lstar ~ 20 Lsun, solar
Context: Around 30 per cent of the observed exoplanets that orbit M dwarf stars are gas giants that are more massive than Jupiter. These planets are prime candidates for formation by disc instability. Aims: We want to determine the conditions for dis