ترغب بنشر مسار تعليمي؟ اضغط هنا

The relation between stellar magnetic field geometry and chromospheric activity cycles II: The rapid 120 day magnetic cycle of Tau Bootis

67   0   0.0 ( 0 )
 نشر من قبل Sandra Jeffers
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.V.Jeffers




اسأل ChatGPT حول البحث

One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper we aim to monitor the evolution of $tau$ Boos large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with $tau$ Boos 120 day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that $tau$ Boo has a very fast magnetic cycle of only 240 days. At activity maximum $tau$ Boos large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished.



قيم البحث

اقرأ أيضاً

65 - S.V.Jeffers 2017
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridanis large-scale magnetic field geometry evolves over its activity cycle we focus on high cadence observations spanning 5 months at its activity minimum. Over this timespan we reconstruct 3 maps of Epsilon Eridanis large-scale magnetic field using the tomographic technique of Zeeman Doppler Imaging. The results show that at the minimum of its cycle, Epsilon Eridanis large-scale field is more complex than the simple dipolar structure of the Sun and 61 Cyg A at minimum. Additionally we observe a surprisingly rapid regeneration of a strong axisymmetric toroidal field as Epsilon Eridani emerges from its S-index activity minimum. Our results show that all stars do not exhibit the same field geometry as the Sun and this will be an important constraint for the dynamo models of active solar-type stars.
In this paper, we present new spectropolarimetric observations of the planet-hosting star Tau Bootis, using ESPaDOnS and Narval spectropolarimeters at Canada-France-Hawaii Telescope (CFHT) and Telescope Bernard Lyot (TBL), respectively. We detected t he magnetic field of the star at three epochs in 2008. It is a weak magnetic field of only a few Gauss, oscillating between a predominant toroidal component in January and a dominant poloidal component in June and July. A magnetic polarity reversal was observed relative to the magnetic topology in June 2007. This is the second such reversal observed in two years on this star, suggesting that Tau Boo has a magnetic cycle of about 2 years. This is the first detection of a magnetic cycle for a star other than the Sun. The role of the close-in massive planet in the short activity cycle of the star is questioned. Tau Boo has strong differential rotation, a common trend for stars with shallow convective envelope. At latitude 40 deg., the surface layer of the star rotates in 3.31 d, equal to the orbital period. Synchronization suggests that the tidal effects induced by the planet may be strong enough to force at least the thin convective envelope into corotation. Tau Boo shows variability in the Ca H & K and Halpha throughout the night and on a night to night time scale. We do not detect enhancement in the activity of the star that may be related to the conjunction of the planet. Further data is needed to conclude about the activity enhancement due to the planet.
Studying cool star magnetic activity gives an important insight into the stellar dynamo and its relationship with stellar properties, as well as allowing us to place the Suns magnetism in the context of other stars. Only 61 Cyg A (K5V) and $tau$ Boo (F8V) are currently known to have magnetic cycles like the Suns, where the large-scale magnetic field polarity reverses in phase with the stars chromospheric activity cycles. ${tau}$ Boo has a rapid $sim$240 d magnetic cycle, and it is not yet clear whether this is related to the stars thin convection zone or if the dynamo is accelerated by interactions between ${tau}$ Boo and its hot Jupiter. To shed light on this, we studied the magnetic activity of HD75332 (F7V) which has similar physical properties to ${tau}$ Boo and does not appear to host a hot Jupiter. We characterized its long term chromospheric activity variability over 53 yrs and used Zeeman Doppler Imaging to reconstruct the large-scale surface magnetic field for 12 epochs between 2007 and 2019. Although we observe only one reversal of the large-scale magnetic dipole, our results suggest that HD75332 has a rapid $sim$1.06 yr solar-like magnetic cycle where the magnetic field evolves in phase with its chromospheric activity. If a solar-like cycle is present, reversals of the large-scale radial field polarity are expected to occur at around activity cycle maxima. This would be similar to the rapid magnetic cycle observed for ${tau}$ Boo, suggesting that rapid magnetic cycles may be intrinsic to late-F stars and related to their shallow convection zones.
We present six epochs of spectropolarimetric observations of the hot-Jupiter-hosting star $tau$ Bootis that extend the exceptional previous multi-year data set of its large-scale magnetic field. Our results confirm that the large-scale magnetic field of $tau$ Bootis varies cyclicly, with the observation of two further magnetic reversals; between December 2013 and May 2014 and between January and March 2015. We also show that the field evolves in a broadly solar-type manner in contrast to other F-type stars. We further present new results which indicate that the chromospheric activity cycle and the magnetic activity cycles are related, which would indicate a very rapid magnetic cycle. As an exemplar of long-term magnetic field evolution, $tau$ Bootis and this longterm monitoring campaign presents a unique opportunity for studying stellar magnetic cycles.
Aims. We analyze observational data from 4 instruments to study the correlations between chromospheric emission, spanning the heights from the temperature minimum region to the middle chromosphere, and photospheric magnetic field. Methods: The data c onsist of radio images at 3.5 mm from the Berkeley-Illinois-Maryland Array (BIMA), UV images at 1600 A from TRACE, Ca II K-line filtergrams from BBSO, and MDI/SOHO longitudinal photospheric magnetograms. For the first time interferometric millimeter data with the highest currently available resolution are included in such an analysis. We determine various parameters of the intensity maps and correlate the intensities with each other and with the magnetic field. Results: The chromospheric diagnostics studied here show a pronounced similarity in their brightness structures and map out the underlying photospheric magnetic field relatively well. We find a power law to be a good representation of the relationship between photospheric magnetic field and emission from chromospheric diagnostics at all wavelengths. The dependence of chromospheric brightness on magnetic field is found to be different for network and internetwork regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا