ﻻ يوجد ملخص باللغة العربية
One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper we aim to monitor the evolution of $tau$ Boos large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with $tau$ Boos 120 day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that $tau$ Boo has a very fast magnetic cycle of only 240 days. At activity maximum $tau$ Boos large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished.
The young and magnetically active K dwarf Epsilon Eridani exhibits a chromospheric activity cycle of about 3 years. Previous reconstructions of its large-scale magnetic field show strong variations at yearly epochs. To understand how Epsilon Eridanis
In this paper, we present new spectropolarimetric observations of the planet-hosting star Tau Bootis, using ESPaDOnS and Narval spectropolarimeters at Canada-France-Hawaii Telescope (CFHT) and Telescope Bernard Lyot (TBL), respectively. We detected t
Studying cool star magnetic activity gives an important insight into the stellar dynamo and its relationship with stellar properties, as well as allowing us to place the Suns magnetism in the context of other stars. Only 61 Cyg A (K5V) and $tau$ Boo
We present six epochs of spectropolarimetric observations of the hot-Jupiter-hosting star $tau$ Bootis that extend the exceptional previous multi-year data set of its large-scale magnetic field. Our results confirm that the large-scale magnetic field
Aims. We analyze observational data from 4 instruments to study the correlations between chromospheric emission, spanning the heights from the temperature minimum region to the middle chromosphere, and photospheric magnetic field. Methods: The data c