ﻻ يوجد ملخص باللغة العربية
We prove an extension theorem for ultraholomorphic classes defined by so-called Braun-Meise-Taylor weight functions and transfer the proofs from the single weight sequence case from V. Thilliez [28] to the weight function setting. We are following a different approach than the results obtained in [11], more precisely we are working with real methods by applying the ultradifferentiable Whitney-extension theorem. We are treating both the Roumieu and the Beurling case, the latter one is obtained by a reduction from the Roumieu case.
In our article [15] description in terms of abstract boundary conditions of all $m$-accretive extensions and their resolvents of a closed densely defined sectorial operator $S$ have been obtained. In particular, if ${mathcal{H},Gamma}$ is a boundary
We give a complete solution to the Borel-Ritt problem in non-uniform spaces $mathscr{A}^-_{(M)}(S)$ of ultraholomorphic functions of Beurling type, where $S$ is an unbounded sector of the Riemann surface of the logarithm and $M$ is a strongly regular
We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman-Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dynkin. We extend previous results by J. Schmets and M. Va
A plethora of spaces in Functional Analysis (Braun-Meise-Taylor and Carleman ultradifferentiable and ultraholomorphic classes; Orlicz, Besov, Lipschitz, Lebesque spaces, to cite the main ones) are defined by means of a weighted structure, obtained fr
We introduce a general multisummability theory of formal power series in Carleman ultraholomorphic classes. The finitely many levels of summation are determined by pairwise comparable, nonequivalent weight sequences admitting nonzero proximate orders