ﻻ يوجد ملخص باللغة العربية
The recently introduced coder based on region-adaptive hierarchical transform (RAHT) for the compression of point clouds attributes, was shown to have a performance competitive with the state-of-the-art, while being much less complex. In the paper Compression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform, top performance was achieved using arithmetic coding (AC), while adaptive run-length Golomb-Rice (RLGR) coding was presented as a lower-performance lower-complexity alternative. However, we have found that by reordering the RAHT coefficients we can largely increase the runs of zeros and significantly increase the performance of the RLGR-based RAHT coder. As a result, the new coder, using ordered coefficients, was shown to outperform all other coders, including AC-based RAHT, at an even lower computational cost. We present new results and plots that should enhance those in the work of Queiroz and Chou to include the new results for RLGR-RAHT. We risk to say, based on the results herein, that RLGR-RAHT with sorted coefficients is the new state-of-the-art in point cloud compression.
We introduce the Region Adaptive Graph Fourier Transform (RA-GFT) for compression of 3D point cloud attributes. The RA-GFT is a multiresolution transform, formed by combining spatially localized block transforms. We assume the points are organized by
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815), which takes a source image and a corresponding quality map as inputs and produce a compressed image with variable rates. Our model covers
Due to the large amount of data that point clouds represent and the differences in geometry of successive frames, the generation of motion vectors for an entire point cloud dataset may require a significant amount of time and computational resources.
In this paper, we propose a new deep image compression framework called Complexity and Bitrate Adaptive Network (CBANet), which aims to learn one single network to support variable bitrate coding under different computational complexity constraints.
Compression of point clouds has so far been confined to coding the positions of a discrete set of points in space and the attributes of those discrete points. We introduce an alternative approach based on volumetric functions, which are functions def