ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Detect

52   0   0.0 ( 0 )
 نشر من قبل Neev Samuel
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider Multiple-Input-Multiple-Output (MIMO) detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a Detection Network (DetNet) which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the purposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions.



قيم البحث

اقرأ أيضاً

Scheduling the transmission of time-sensitive information from a source node to multiple users over error-prone communication channels is studied with the goal of minimizing the long-term average age of information (AoI) at the users. A long-term ave rage resource constraint is imposed on the source, which limits the average number of transmissions. The source can transmit only to a single user at each time slot, and after each transmission, it receives an instantaneous ACK/NACK feedback from the intended receiver, and decides when and to which user to transmit the next update. Assuming the channel statistics are known, the optimal scheduling policy is studied for both the standard automatic repeat request (ARQ) and hybrid ARQ (HARQ) protocols. Then, a reinforcement learning(RL) approach is introduced to find a near-optimal policy, which does not assume any a priori information on the random processes governing the channel states. Different RL methods including average-cost SARSAwith linear function approximation (LFA), upper confidence reinforcement learning (UCRL2), and deep Q-network (DQN) are applied and compared through numerical simulations
We consider an agent interacting with an unmodeled environment. At each time, the agent makes an observation, takes an action, and incurs a cost. Its actions can influence future observations and costs. The goal is to minimize the long-term average c ost. We propose a novel algorithm, known as the active LZ algorithm, for optimal control based on ideas from the Lempel-Ziv scheme for universal data compression and prediction. We establish that, under the active LZ algorithm, if there exists an integer $K$ such that the future is conditionally independent of the past given a window of $K$ consecutive actions and observations, then the average cost converges to the optimum. Experimental results involving the game of Rock-Paper-Scissors illustrate merits of the algorithm.
551 - Yichao Zhou , Shichen Liu , Yi Ma 2020
3D reconstruction from a single RGB image is a challenging problem in computer vision. Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability. In this work, we focus on object -level 3D reconstruction and present a geometry-based end-to-end deep learning framework that first detects the mirror plane of reflection symmetry that commonly exists in man-made objects and then predicts depth maps by finding the intra-image pixel-wise correspondence of the symmetry. Our method fully utilizes the geometric cues from symmetry during the test time by building plane-sweep cost volumes, a powerful tool that has been used in multi-view stereopsis. To our knowledge, this is the first work that uses the concept of cost volumes in the setting of single-image 3D reconstruction. We conduct extensive experiments on the ShapeNet dataset and find that our reconstruction method significantly outperforms the previous state-of-the-art single-view 3D reconstruction networks in term of the accuracy of camera poses and depth maps, without requiring objects being completely symmetric. Code is available at https://github.com/zhou13/symmetrynet.
Radar sensors are an important part of driver assistance systems and intelligent vehicles due to their robustness against all kinds of adverse conditions, e.g., fog, snow, rain, or even direct sunlight. This robustness is achieved by a substantially larger wavelength compared to light-based sensors such as cameras or lidars. As a side effect, many surfaces act like mirrors at this wavelength, resulting in unwanted ghost detections. In this article, we present a novel approach to detect these ghost objects by applying data-driven machine learning algorithms. For this purpose, we use a large-scale automotive data set with annotated ghost objects. We show that we can use a state-of-the-art automotive radar classifier in order to detect ghost objects alongside real objects. Furthermore, we are able to reduce the amount of false positive detections caused by ghost images in some settings.
This paper formulates the polar-code construction problem for the successive-cancellation list (SCL) decoder as a maze-traversing game, which can be solved by reinforcement learning techniques. The proposed method provides a novel technique for polar -code construction that no longer depends on sorting and selecting bit-channels by reliability. Instead, this technique decides whether the input bits should be frozen in a purely sequential manner. The equivalence of optimizing the polar-code construction for the SCL decoder under this technique and maximizing the expected reward of traversing a maze is drawn. Simulation results show that the standard polar-code constructions that are designed for the successive-cancellation decoder are no longer optimal for the SCL decoder with respect to the frame error rate. In contrast, the simulations show that, with a reasonable amount of training, the game-based construction method finds code constructions that have lower frame-error rate for various code lengths and decoders compared to standard constructions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا