ترغب بنشر مسار تعليمي؟ اضغط هنا

XOGAN: One-to-Many Unsupervised Image-to-Image Translation

80   0   0.0 ( 0 )
 نشر من قبل Yongqi Zhang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yongqi Zhang




اسأل ChatGPT حول البحث

Unsupervised image-to-image translation aims at learning the relationship between samples from two image domains without supervised pair information. The relationship between two domain images can be one-to-one, one-to-many or many-to-many. In this paper, we study the one-to-many unsupervised image translation problem in which an input sample from one domain can correspond to multiple samples in the other domain. To learn the complex relationship between the two domains, we introduce an additional variable to control the variations in our one-to-many mapping. A generative model with an XO-structure, called the XOGAN, is proposed to learn the cross domain relationship among the two domains and the ad- ditional variables. Not only can we learn to translate between the two image domains, we can also handle the translated images with additional variations. Experiments are performed on unpaired image generation tasks, including edges-to-objects translation and facial image translation. We show that the proposed XOGAN model can generate plausible images and control variations, such as color and texture, of the generated images. Moreover, while state-of-the-art unpaired image generation algorithms tend to generate images with monotonous colors, XOGAN can generate more diverse results.



قيم البحث

اقرأ أيضاً

Style transfer usually refers to the task of applying color and texture information from a specific style image to a given content image while preserving the structure of the latter. Here we tackle the more generic problem of semantic style transfer: given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce XGAN (Cross-GAN), a dual adversarial autoencoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the model to preserve semantics in the learned embedding space. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset, CartoonSet, we collected for this purpose is publicly available at google.github.io/cartoonset/ as a new benchmark for semantic style transfer.
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access to many images in both source and destination classes at training time. We argue this greatly limits their use. Drawing inspiration from the human capability of picking up the essence of a novel object from a small number of examples and generalizing from there, we seek a few-shot, unsupervised image-to-image translation algorithm that works on previously unseen target classes that are specified, at test time, only by a few example images. Our model achieves this few-shot generation capability by coupling an adversarial training scheme with a novel network design. Through extensive experimental validation and comparisons to several baseline methods on benchmark datasets, we verify the effectiveness of the proposed framework. Our implementation and datasets are available at https://github.com/NVlabs/FUNIT .
Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in hu man perception, we tackle this limitation by introducing unsupervised attention mechanisms that are jointly adversarialy trained with the generators and discriminators. We demonstrate qualitatively and quantitatively that our approach is able to attend to relevant regions in the image without requiring supervision, and that by doing so it achieves more realistic mappings compared to recent approaches.
Every recent image-to-image translation model inherently requires either image-level (i.e. input-output pairs) or set-level (i.e. domain labels) supervision. However, even set-level supervision can be a severe bottleneck for data collection in practi ce. In this paper, we tackle image-to-image translation in a fully unsupervised setting, i.e., neither paired images nor domain labels. To this end, we propose a truly unsupervised image-to-image translation model (TUNIT) that simultaneously learns to separate image domains and translates input images into the estimated domains. Experimental results show that our model achieves comparable or even better performance than the set-level supervised model trained with full labels, generalizes well on various datasets, and is robust against the choice of hyperparameters (e.g. the preset number of pseudo domains). Furthermore, TUNIT can be easily extended to semi-supervised learning with a few labeled data.
Recent studies have shown remarkable success in unsupervised image-to-image translation. However, if there has no access to enough images in target classes, learning a mapping from source classes to the target classes always suffers from mode collaps e, which limits the application of the existing methods. In this work, we propose a zero-shot unsupervised image-to-image translation framework to address this limitation, by associating categories with their side information like attributes. To generalize the translator to previous unseen classes, we introduce two strategies for exploiting the space spanned by the semantic attributes. Specifically, we propose to preserve semantic relations to the visual space and expand attribute space by utilizing attribute vectors of unseen classes, thus encourage the translator to explore the modes of unseen classes. Quantitative and qualitative results on different datasets demonstrate the effectiveness of our proposed approach. Moreover, we demonstrate that our framework can be applied to many tasks, such as zero-shot classification and fashion design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا