ترغب بنشر مسار تعليمي؟ اضغط هنا

Competing soft phonon modes at the charge-density-wave transitions in DyTe$_3$

401   0   0.0 ( 0 )
 نشر من قبل Frank Weber
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The family of rare-earth tritellurides RTe$_3$ features charge-density-wave (CDW) order related to strongly momentum-dependent electron-phonon coupling. Similar to other CDW compounds, superconductivity is observed when the CDW order is suppressed via hydrostatic pressure [1]. What sets the heavier members of the RTe3 series apart is the observation of a second CDW transition at lower temperatures having an in-plane ordering wavevector $q_{CDW,2}parallel [100]$ of almost the same magnitude but orthogonal to the ordering wavevector $q_{CDW,1}parallel [001]$ observed at higher temperatures [2]. Here, we report an inelastic x-ray scattering investigation of the lattice dynamics of DyTe$_3$. In particular, we show that there are several phonon modes along both in-plane directions, which respond to the onset of the CDW transition at $T_{CDW,1}=308,rm{K}$. Surprisingly, these soft modes close to $q_{CDW,2}=(0.68,0,0)$ show strong softening near $T_{CDW,1}$ but do not exhibit any response to the lower-temperature transition at $T_{CDW,2}=68,rm{K}$. Our results indicate that the low-temperature CDW order is not just the 90{deg} rotated analogue of the one appearing at high temperatures.



قيم البحث

اقرأ أيضاً

We present electrical resistivity and ac-susceptibility measurements of GdTe$_3$, TbTe$_3$ and DyTe$_3$ performed under pressure. An upper charge-density-wave (CDW) is suppressed at a rate of $mathrm{d}T_{mathrm{CDW,1}}/mathrm{d}P$ = $-$85 K/GPa. For TbTe$_3$ and DyTe$_3$, a second CDW below $T_{mathrm{CDW,2}}$ increases with pressure until it reaches the $T_{mathrm{CDW,1}}$($P$) line. For GdTe$_3$, the lower CDW emerges as pressure is increased above $sim$ 1 GPa. As these two CDW states are suppressed with pressure, superconductivity (SC) appears in the three compounds at lower temperatures. Ac-susceptibility experiments performed on TbTe$_3$ provide compelling evidence for bulk SC in the low-pressure region of the phase diagram. We provide measurements of superconducting critical fields and discuss the origin of a high-pressure superconducting phase occurring above 5 GPa.
When electrons in a solid are excited with light, they can alter the free energy landscape and access phases of matter that are beyond reach in thermal equilibrium. This accessibility becomes of vast importance in the presence of phase competition, w hen one state of matter is preferred over another by only a small energy scale that, in principle, is surmountable by light. Here, we study a layered compound, LaTe$_3$, where a small in-plane (a-c plane) lattice anisotropy results in a unidirectional charge density wave (CDW) along the c-axis. Using ultrafast electron diffraction, we find that after photoexcitation, the CDW along the c-axis is weakened and subsequently, a different competing CDW along the a-axis emerges. The timescales characterizing the relaxation of this new CDW and the reestablishment of the original CDW are nearly identical, which points towards a strong competition between the two orders. The new density wave represents a transient non-equilibrium phase of matter with no equilibrium counterpart, and this study thus provides a framework for unleashing similar states of matter that are trapped under equilibrium conditions.
The infrared (IR) reflectivity spectra of orthorhombic manganese perovskites PrMnO$_3$ and CaMnO$_3$ are studied in the frequency range of optical phonon modes at temperatures varying from 300 to 4 K. The IR phonon spectra of these two materials are analyzed by a fitting procedure based on a Lorentz model, and assigned to definite vibrational modes of $Pnma$ structures by comparison with the results of lattice dynamical calculations. The calculations have been performed in the framework of a shell model using short range Born-Mayer-Buckingham and long range Coulomb potentials, whose parameters have been optimized in order that the calculated Raman and IR active phonon frequencies, and lattice parameters match with their experimental values. We find a close correspondence between the values of the IR phonon frequencies of PrMnO$_3$ and CaMnO$_3$, which shows that the substitution of the Pr$^{3+}$ ions with Ca$^{2+}$ results in a reduction of the frequency of medium- and high-energy IR phonons, and an increase of the frequency of those of low-energy. Nevertheless, the experimentally obtained IR phonon amplitudes of the two materials appear to be unrelated. A comparative study of the vibrational patterns of these modes reveals that most of them correspond to complex atomic vibrations significantly different from PrMnO$_3$ to CaMnO$_3$ which cannot be assigned only to a given type of vibration (external, bending, or stretching modes). In particular, these results confirm that the structure of CaMnO$_3$ is quite far from the ideal (cubic) perovskite structure.
Using first-principles calculations, we identify the origin of the observed charge density wave (CDW) formation in a layered kagome metal CsV$_3$Sb$_5$. It is revealed that the structural distortion of kagome lattice forming the trimeric and hexameri c V atoms is accompanied by the stabilization of quasimolecular states, which gives rise to the opening of CDW gaps for the V-derived multibands lying around the Fermi level. This Jahn-Teller-like instability having the local lattice distortion and its derived quasimolecular states is a driving force of the CDW order. Specifically, the saddle points of multiple Dirac bands near the Fermi level, located at the $M$ point, are hybridized to disappear along the $k_z$ direction, therefore not supporting the widely accepted Peierls-like electronic instability due to Fermi surface nesting. It is further demonstrated that applied hydrostatic pressure significantly reduces the interlayer spacing to destabilize the quasimolecular states, leading to a disappearance of the CDW phase at a pressure of ${sim}$2 GPa. The presently proposed underlying mechanism of the CDW order in CsV$_3$Sb$_5$ can also be applicable to other isostructural kagome lattices such as KV$_3$Sb$_5$ and RbV$_3$Sb$_5$.
69 - Matteo Calandra 2018
We study the structural, electronic and vibrational properties of single-layer 1TNbSe$_2$ from first principles. Within the generalized gradient approximation, the 1T polytype is highly unstable with respect to the 2H. The DFT+U method improves the s tability of the 1T phase, explaining its detection in experiments. A charge density wave occurs with a $sqrt{13}timessqrt{13}~R30^{circ}$ periodicity, in agreement with STM data. At $U=0$, the David-star reconstruction displays a flat band below the Fermi level with a marked d$_{z^2-r^2}$ orbital character of the central Nb. The Hubbard interaction induces a magnetic Mott insulating state. Magnetism distorts the lattice around the central Nb atom in the star, reduces the hybridization between the central Nb d$_{z^2-r^2}$ orbital and the neighbouring Se p-states and lifts in energy the flat band becoming non-bonding. This cooperative lattice and magnetic effect amplifies the Mott gap. Single-layer 1TNbSe$_2$ is then a phonon-assisted spin-$1/2$ Magnetic Mott insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا